English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%) Visitors : 23033217      Online Users : 339

 Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7894

 Title: On the Diophantine Equation of (x^m-1)/(x-1)=(y^n-1)/(y-1) Authors: 洪雅婷;Ya-Ting Hung Contributors: 數學研究所 Keywords: Diophantine Equation Date: 2006-06-16 Issue Date: 2009-09-22 11:08:22 (UTC+8) Publisher: 國立中央大學圖書館 Abstract: 我們考慮特別的整係數方程式去尋找整數解或有理數解。Ratat和Goormaghtigh觀察出當x,y,m,n為正整數時，(x,y,m,n)=(5,2,3,5)和(90,2,3,13)是方程式 (x^m-1)/(x-1)=(y^n-1)/(y-1) 的解。因此，猜想此方程式只有這兩組解。現在，我們集中焦點在m=3。此時方程式有兩組已知的解。除了那兩組解之外的解就稱為例外解。這篇論文，主要是考慮當n=4時，此方程式沒有例外解。 We consider special Diophantine equations with integral coefficient and seek integral or rational solutions. Ratat[1] and Goormaghtigh [2] observed that 31=(2^5-1)/(2-1)=(5^3-1)/(5-1) and 8191=(2^13-1)/(2-1)=(90^3-1)/(90-1) are solutions of the Diophantine equation (x^m-1)/(x-1)=(y^n-1)/(y-1) ; x > 1; y > 1; n > m > 2.....(1) Now, we will focus our attention on the equation (x^3-1)/(x-1)=(y^n-1)/(y-1) ; n > 2; x > 1; y > 1 with x > y.....(2) Equation (2) has two known solutions (x, y, n) = (5, 2, 5), (90, 2, 13). Any other solution (x, y, n) of (2) will be called exceptional. In this paper, we show that this equation (2) has no exceptional solution when n = 4. Appears in Collections: [Graduate Institute of Mathematics] Electronic Thesis & Dissertation

Files in This Item:

File SizeFormat

 社群 sharing

::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期：8-24-2009 :::