English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 23001734      Online Users : 554
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7902


    Title: The average of the number of r-periodic points over a quadratic number field.
    Authors: 李亭芳;Ting-Fang Li
    Contributors: 數學研究所
    Keywords: 動態系統;p-adic
    Date: 2006-06-28
    Issue Date: 2009-09-22 11:08:36 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在這篇論文中,我們要計算在一個二次的field extension上週期為 的點個數的平均值,其構想和方法主要是參考 [3] 和 [4] 這兩篇論文。我們利用兩種不同的方法去計算這一個平均值,Prime Number Theorem 和Group Action。第一個方法是先計算週期為 的點個數,再利用Prime Number Theorem去計算平均值。第二個方法是去討論這個平均值和Galois group 作用在這些點上的orbit個數間的關係,進而利用這樣的關係計算出此平均值。 In this paper, we compute the average of the number of r-periodic points over a quadratic number ?eld generalizing results in [3] and [4]. We use two di®erent methods, the prime number theorem and group action, to compute the average and compare the result. First method is to counte the number of the primitive r-periodic points. After that we use the prime number theorem to compute the average. And we discuss relationship between the average and the number of orbits in the set of primitive r-periodic points under the Galois action in the second method.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown609View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明