English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23037419      Online Users : 332
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7907


    Title: 隨機右設限數據之風險率的貝氏估計方法;A Bayesian method for hazard rate estimation based on right-censored data
    Authors: 陳光堯;Guang-Yao Chen
    Contributors: 數學研究所
    Keywords: 伯氏多項式;邊界核估計;貝氏存活分析;boundary kernels;Bernstein polynomial;Bayesian survival analysis
    Date: 2007-06-20
    Issue Date: 2009-09-22 11:08:44 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: Hess and Brown(1999) 回顧多種對於右設限數據之風險率的核估計方法,且經由模擬比較發現,Muller and Wang(1994) 所提出的邊界核估計法的估計效果較好。本文之目的是在貝氏模型下,提出對於右設限數據之風險率的估計。在這貝氏方法中,我們利用 Bernstein 多項式來表達累積風險率,而將先驗分佈建立在這些 Bernstein 多項式的次數及係數上;統計推論所需之後驗分佈是利用 MCMC 的方法來做。最後,我們把我們的方法與 Muller and Wang(1994) 的邊界核估計法做模擬比較,結果顯示我們的貝氏方法有較小的均方誤差。 Hess and Brown(1999) reviewed various kernel methods for hazard rate estimation based on right-censored data. Through simulations, they found that the boundary kernel estimator by Muller and Wang(1994) had improved performance. In this paper, we will propose a Bayesian estimator for hazard rate, using prior on Bernstein polynomials, and make inference using MCMC methods. Comparison using simulation shows that our Bayesian estimator performs better than the boundary kernel estimator of Muller and Wang(1994) in terms of mean-squared error.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明