English  |  正體中文  |  简体中文  |  Items with full text/Total items : 76531/76531 (100%) Visitors : 29725185      Online Users : 348
 Scope All of NCUIR 理學院    數學研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 NCU Institutional Repository > 理學院 > 數學研究所 > 博碩士論文 >  Item 987654321/7911

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/7911`

 Title: Hardy-Hilbert型式的不等式和Cauchy加法映射的穩定性;On Hardy-Hilbert Type Inequalities and Stability of Cauchy Additive Mappings Authors: 曾冠逞;Guan-Cheng Zeng Contributors: 數學研究所 Keywords: 近乎線性映射;穩定性;Holder's 不等式;Hardy-Hilbert 型式的不等式;Norm;積分算子;Approximately linear mapping;stability;Holder's inequality;inequality of Hardy-Hilbert type;integral operator;Norm Date: 2008-03-31 Issue Date: 2009-09-22 11:08:51 (UTC+8) Publisher: 國立中央大學圖書館 Abstract: 這篇論文研究兩個主題:Hardy-Hilbert型式的積分不等式和Cauchy加法映射的穩定性。 下列是主要結果：1) 將B. Yang對某種有界的自伴積分算子T : L2 (0,∞) → L2 (0,∞) 的範數及其應用到Hardy -Hilbert型式的不等式的結果， 從 L2 (0,∞)空間推廣到Lp (0,∞) 空間 (p > 1) ; 2) 推廣Rassias關於Cauchy加法映射的穩定性定理; 3) 給予Park等人[6]的定理的一個正確的證明; 4) 以一個唯一的群的同態變換 (或環的同態變換) 去逼近一個特定的向量映射的奇部分。 This thesis is concerned with two subjects of research; Hardy-Hilbert type inequalities and the stability of Cauchy additive mappings. The following are done : 1) to extend B. Yang's result on the norm of a bounded self- adjoint integral operator T : L2 (0,∞) → L2 (0,∞) and its applications to Hardy-Hilbert type integral inequalities from the space L2 (0,∞) to the space Lp (0,∞) with p > 1 ; 2) to generalize Rassias's theorem on the stability of Cauchy additive mappings ; 3) to give a correct proof of Park et al's theorem in [6]; 4) to approximate the odd part of a certain vector mapping by a unique group homomorphism and ring homomorphism, respectively. Appears in Collections: [Graduate Institute of Mathematics] Electronic Thesis & Dissertation

Files in This Item:

File SizeFormat