English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78345/78345 (100%)
Visitors : 32619895      Online Users : 937
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7912

    Title: 非線性守恆律的擾動Riemann 問題的古典解;Classical Solution to the Perturbed Riemann Problem of Scalar Nonlinear Balance Law
    Authors: 周世偉;Shih-Wei Chou
    Contributors: 數學研究所
    Keywords: 非線性黎曼問題;特徵線法;守恆律;Perturbed Riemann problems;Riemann problems;Nonlinear balance laws;Characteristic method;Conservation laws
    Date: 2007-06-28
    Issue Date: 2009-09-22 11:08:53 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在本文裡我們學習非線性守恆律的擾動Riemann 問題的古典解之廣域存在性,使用特徵線的方法去建立擾動的Riemann問題的古典解,而且經由擾動的Riemann問題的極限獲得Riemann 問題的解。 In this paper we study the global existence of classical solutions to the perturbed Riemann problem of scalar nonlinear balance law. The characteristic method is used to establish the existence of classical perturbed Riemann solutions. Moreover, the generalized solutions of Riemann problem to scalar balance law is obtained by taking the limit of perturbed Riemann solutions. Furthermore, we also obtain the self-similarity of generalized Riemann solutions (rarefaction waves) which enables us to apply Lax's method to the Riemann problem of scalar nonlinear balance laws.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明