English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22915296      Online Users : 443
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/79127

    Title: 碳纖維光電觸媒複合電極之開發及其應用於尿素廢水處理/產氫之探討;Development of Photoelectrocatalytic Composite Electrode and Its Application on Urea Wastewater Treatment/Hydrogen Generation
    Authors: 劉奕宏
    Contributors: 國立中央大學化學工程與材料工程學系
    Keywords: 碳纖維;觸媒;光電催化;尿素廢水;氫氣;carbon fiber;catalyst;photoelectrocatalysis;urea wastewater;hydrogen
    Date: 2019-02-21
    Issue Date: 2019-02-21 14:47:52 (UTC+8)
    Publisher: 科技部
    Abstract: 本計畫擬以碳纖維作為導電基材,開發具有光電催化特性之觸媒複合電極,並應用此電極於尿素廢水處理,藉以提升目標汙染物(尿素)的降解效率同時達到產氫的目的。本計畫主要分為三大部分(三年)進行,第一部分主要工作為碳纖維的基本物性分析以及前處理、接續利用CVD合成方式披覆奈米碳管/球於碳纖維本體,開發改質碳纖維。進一步透過水熱合成的方式結合碳纖維或改質碳纖維與NiO/Ni(OH)2觸媒,製備具有良好導電性、高比表面積、多孔性的碳纖維複合電極。 第二部分是應用前述之碳纖維、改質碳纖維以及碳纖維複合電極於尿素的廢水處理,從陽極氧化反應的電化學分析與探討,了解各個材料在廢水處理中所扮演的角色。特別針對碳纖維複合電極部分,另外施以UV光,使複合電極同時發揮光電催化之效用,提高目標汙染物的降解效益。 在本計畫的第三部分,將先探討陰極電極材料選擇與還原產氫的反應,接續以最適陰極為對象,探討光電芬頓反應對目標汙染物降解的影響。最後則是建置陽極光電催化/陰極光電芬頓之雙效廢水處理系統,利用系統參數的最佳化提高目標汙染物的降解以及陰極氫氣產出的效率。同時也會藉由電化學分析,釐清電極界面發生的反應機制以及反應動力行為。 本計畫所開發之新型碳纖維觸媒複合電極,電極材料以地球含量豐富的元素為主,透過低溫簡易的程序製備而成。利用複合電極光電催化的優勢配合陰極光電芬頓效應,期能提升尿素廢水處理效率的同時,並達到產氫的功用,這對環境永續以及新能源創出的觀點上有其研究開發之重要意義。 ;The project aims to develop a carbon fiber (CF)/catalyst composite electrode with photoelectrocatalytic function, which can be applied on urea wastewater treatment. There are three main research parts in this project. The first part focuses on characteristic analysis and pretreatment of CFs; development of modified CFs by coating carbon nanotubes/nanospheres via CVD; development of CFs∥NiO/Ni(OH)2 composite electrode by use of hydrothermal method. The composite electrode is expected to have good electrically conductivity, high specific surface area and high porosity. In the second part, CFs, modified CFs and composite electrode are applied as anodes in the urea wastewater treatment system. The characteristics of each electrode material are investigated based on electrochemical analysis techniques. In addition, UV light is introduced to the system, inducing the photoelectrocatalytic effect of the composite electrode to degrade the target pollutant. As for the last part of, cathode materials beneficial to hydrogen generation is selected and the photoelectro-Fenton reaction occurring at cathode is discussed in terms of the target pollutant degradation. Next, a wastewater system integrating anode photoelectrocatalysis and cathode photoelectro-Fenton reactions is established and optimized to increase the efficiencies of target pollutant degradation and hydrogen generation. Moreover, the corresponding mechanisms and kinetics of reactions occurring at the electrode/solution interface are discussed based on electrochemical analysis. In this project, our research purpose is to develop advanced composite electrodes composed of earth abundant elements through a low-temperature and simple fabrication process. According to the photoelectrocatalytic effect of the composite electrode (anode) together with the cathode photoelectro-Fenton, the efficiencies for urea wastewater treatment and hydrogen generation are expected to be profoundly enhanced. Therefore, it is believed that the project is very meaningful and contributes to environmental sustainability and new energy creation.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[化學工程與材料工程學系 ] 研究計畫

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明