English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23175649      Online Users : 318
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/79359

    Title: Evaluation of Hybrid Electric Arc Furnace Steel Slag and Reclaimed Asphalt Pavement in Asphalt Concrete;Evaluation of Hybrid Electric Arc Furnace Steel Slag and Reclaimed Asphalt Pavement in Asphalt Concrete
    Authors: 史雅敏;Smimine, Hasnae Amal
    Contributors: 土木工程學系
    Keywords: 細氧化碴;刨除料;試驗道路;EAF fine steel slag;RAP;road test
    Date: 2019-01-30
    Issue Date: 2019-04-02 14:09:07 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著台灣廢棄物堆放量的增加, 再生材料導入土木工程中,尤其是鋪面領域以符合可持續發展的研究是必要的,電弧爐(Electric Arc Furnace, EAF)鋼渣是煉鋼工業生產的再生材料之一,再生瀝青鋪面(Reclaimed Asphalt Pavement, RAP)是常見的另一種再生材料,由道路維護和銑刨產生。本研究旨在評估含有細EAF和RAP粒料的熱拌瀝青混合料,第一種配比設計包含30%的EAF,第二種配比設計混合各20%的EAF和RAP,使用設計配比進行實驗室拌合和夯打馬歇爾試體以及一系列實驗測試,對照組的物理性能進行比較評估,和對照組相比,EAF和EAF + RAP配比的馬歇爾穩定值較低,但在抗車轍和抗水分侵害方面表現更好。本研究的第二階段,進行現地試鋪,將試驗道路分成三個不同的斷面,每個斷面皆為實驗室設計的配比之一,廠拌的瀝青混合料有質量控制的問題,含有EAF的瀝青混合料中的孔隙率極低,然而,在試鋪道路完成之後進行了三次成效追蹤,每次間隔一個月,EAF斷面,顯示出最佳的車轍抗性和防滑性,而所有三個斷面都表現出令人滿意的平整度,因此,使用一到二種再生材料的瀝青混合料呈現的結果是令人滿意的,符合可持續發展,建議未來應針對新的再生材料導入土木工程的研究。;With the increase of the piling of the waste materials in Taiwan, it is relevant to take actions following the sustainable development norms and find ways to introduce the recycling materials into the civil engineering work such as the pavements construction. The electric arc furnace (EAF) steel slag is one of the recycling materials piling in the nature produced from the steel refining industry. Reclaimed asphalt pavement (RAP) is another recycling material resulted from the roads milling for roads maintenance and rehabilitation. This study aimed at evaluating hot mix asphalt mixtures containing of both the EAF fine steel slag aggregate and RAP. The first mix design contains the EAF with 30% and the second mix design contains the hybrid EAF and RAP with 20% each. Laboratory mixed and compacted specimens are designed and carried for a chain of experimental tests to evaluate their physical properties performance as they are compared to a control mix design. The EAF and EAF+RAP exposed less Marshall stability compared to the control mix yet performed better in terms of rutting resistance and moisture susceptibility. For the second phase of the study, a road test was paved into three distinct sections each presenting one of the previously designed mixtures in the lab. The paving plant’s mixtures were investigated and showed critical quality control: the air voids within the mixtures containing EAF showed very critical air voids percentages. Nevertheless, after the road paving, in-site tests were carried out on three different dates with one-month interval between each date. The EAF section, next to the section with the hybrid EAF+RAP, showed the best rutting resistance and skid resistance while all of the three sections displayed a satisfying smoothness. Thus, the incorporation of one to two recycling materials yielded in satisfying results and the investigation to introducing new recycling materials to the civil engineering work should carry on for the sake of the sustainable development.
    Appears in Collections:[土木工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明