English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%) Visitors : 36238264      Online Users : 415
 Scope All of NCUIR 理學院    數學研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 NCU Institutional Repository > 理學院 > 數學研究所 > 博碩士論文 >  Item 987654321/7939

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/7939`

 Title: 沿著瑞奇流的κ-noncollapsing 估計;κ－Noncollapsing estimates along the Ricci flow Authors: 賴馨華;Sin-hua Lai Contributors: 數學研究所 Keywords: 沿著瑞奇流的κ-noncollapsing 估計;κ－Noncollapsing estimates along the Ricci flow Date: 2008-06-26 Issue Date: 2009-09-22 11:09:38 (UTC+8) Publisher: 國立中央大學圖書館 Abstract: 在這篇文章裡我們描述了兩種由Perelman提出建立沿著瑞奇 流的κ-noncollapsing定理的方法。第一種方法是使用Perelman entropy。第二種方法是利用Perelman’s reduced volume的單調性來建立。Reduced volume是對non-collapsing定理更局部的看法，因此我們學習Perelman的証明中關於龐加萊猜想裡ancient κ-noncollapsing的解時(這種解不必是緊緻因此不被總體的量所控制)，第二個方法是重要的。我們的論述主要是依據Cao-Zhu [6]，關於Perelman’s Wfunctional我們參考O. Rothaus [3]給予更詳細的說明。 In this paper we report on the two methods pioneered by G. Perelman[1] to establish his κ-noncollapsing thm of the Ricci flow. The first method uses the Perelman entropy. The second proof uses the monotonicity of the Perelman’s reduced volume. The second proof is important, because the reduced volume is a more localized quantity in its definition and so one can in fact establish local versions of the non-collapsing theorem which turn out to be important when we study ancient κ-noncollapsing solutions in Perelman’s proof of the Poincar´e conjecture. Such solutions need not be compact and so cannot be controlled by global quantities (such as the Perelman entropy). Our treatment follows closely the cuticle by Cao-Zhu [6], with some more details on Perelman’s W functional by O. Rothaus [3]. Appears in Collections: [數學研究所] 博碩士論文

Files in This Item:

File SizeFormat