English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64745/64745 (100%)
造訪人次 : 20440000      線上人數 : 313
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7941


    題名: 利用Bernstein多項式來研究二元迴歸;Binary regression with Bernstein polynomials
    作者: 蕭愛齡;Ai-ling Hsiao
    貢獻者: 數學研究所
    關鍵詞: 馬可夫鏈蒙地卡羅法;logistic 迴歸模型;Bernstein 多項式;MCMC;Bernstein polynomial;logistic regression model
    日期: 2008-06-06
    上傳時間: 2009-09-22 11:09:41 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 傳統上,針對二元資料之分析多採用 logistic 迴歸模型。但此模型在事件發生之條件機率上有單調函數之限制,因此我們利用Bernstein 多項式來表達事件發生之條件機率,因而於本文中提出一個藉由Bernstein 多項式所建構的貝氏迴歸模型。在貝氏方法中,我們將先驗分佈建立在Bernstein 多項式的次數和係數所組成的參數空間上,並對統計推論所需的後驗分佈用MCMC 的方法做 抽樣。最後,在相同的模型與方法下,比較在不同樣本數及先驗分佈下的模擬結果;其次,對於logistic 迴歸模型的限制,經由模擬顯示本文所提出的貝氏迴歸有較小的均方誤差。 Data analysis of binary response variables are often conducted by logistic regression model. Logistic regression model assumes that the conditional probability function of success is a monotonic function. In order to eliminate this sometimes unnecessary monotone restriction, we propose to use Bernstein polynomials to model the conditional probability of success. As a Bayesian approach, we put a prior on the space of Bernstein polynomials having values in [0,1] through their coe cients. The sample from the posterior distribution for inference purpose is obtained by MCMC methods. We conduct simulation studies to examine the e ects of sample size and priors, to indicate that the numerical performance of this method is generally good and to show that our model performs better than the logistic regression model when the regression function is not monotone.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown626檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋  - 隱私權政策聲明