中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7942
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41656247      Online Users : 1580
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7942


    Title: 奇異積分的加權有界性;The weighted boundedness of singular integral operators
    Authors: 蔡孟哲;Meng-che Tsai
    Contributors: 數學研究所
    Keywords: 奇異積分;有界性;;weight;boundedness;singular integral operators
    Date: 2008-06-13
    Issue Date: 2009-09-22 11:09:43 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在此篇文章中,我們給出一些方法去證明算子從 到 的有界性。當假設條件與Muckenhoupt權類有關時,我們可以了解到雙權模不等式的證明只依賴於單權模不等式。我們給出一些例子去說明如何證明它,那就是我們證明極大算子 、奇異積分算子 、極大奇異積分算子 、Marcinkiewicz積分算子 、Marcinkiewicz積分算子 關於面積積分 以及Marcinkiewicz積分算子 關於Littlewood-Paley -函數都是從 到 有界。最後我們用另一個假設條件去證明Marcinkiewicz積分算子 是從到 有界。 In this paper, we give some methods such that the operators are bounded from to . Under the condition related to the Muckenhoupt weights class, we realize that the proof of two weighted norm inequality only depends on one-weighted norm inequality. We give some examples to describe how did we prove it; that is, we proved that the maximal operator , the singular integral operator , the maximal singular integral operator , the Marcinkiewicz integral operator ,the Marcinkiewicz integral operator related to the area integral , and the Marcinkiewicz integral operator related to the Littlewood-Paley -function operator are all bounded from to . Finally, we prove that the Marcinkiewicz integral operator is bounded from to for another condition of .
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明