English  |  正體中文  |  简体中文  |  Items with full text/Total items : 76531/76531 (100%)
Visitors : 29682429      Online Users : 289
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7943

    Title: 數據依賴誤差之階梯函數迴歸的貝氏方法;A Bayesian Approach to Step Function Regression with Data Dependent Error
    Authors: 陳孜圩;Tzu-yu Chen
    Contributors: 數學研究所
    Keywords: 變點問題;馬可夫鏈蒙地卡羅法;階梯函數;比較型基因體雜交分析技術;貝氏迴歸模型;Markov chain Monte Carlo;change point problem;comparative genomic hybridization;step function;Bayesian regression model
    Date: 2008-06-06
    Issue Date: 2009-09-22 11:09:45 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在這篇論文中,我們將 Wen et al. 在2006年提出的貝氏迴歸模型做推廣,考慮其誤差項會受到迴歸函數的函數值所影響。除此之外,我們也更近一步地探討,在每一個位置附近發生跳點的機率以及其所跳的高度之間的關係。 One of the purposes of this thesis is to extend the Bayesian step-function regression model of Wen et al. (2006) to allow for more general noise term so that the error term may vary with the ratio itself, which is also a familiar phenomenon in regression analysis. The other purpose of this thesis is to explore in more detail the relation between the size of the jump at a point of the posterior mode and posterior probability that it is a jump point.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明