分布函數為機率上重要的分析工具,其重要性不亞於機率密度函數及特徵函數。在統計上分布函數也有很多應用,令$F$表一分布函數,則$F^{-1}$可用於隨機變數之模擬及穩定型分布(stable distribution)之冪數(exponent)的估計。通常分布函數是未知的,必需用樣本估計。分布函數未知時,常用之分布函數的估計式為經驗分布(empirical distribution function)。本文之目的為研究$F^{-1}$的估計,但上述經驗分布卻因其反函數不存在,故不能直接運用。本文提出$F^{-1}(y)$之核估計式$widehat{F}^{-1}(y)$,因此式之機率性質非常複雜,故本文將以電腦模擬方式研究$widehat{F}^{-1}(y)$之漸近一致性(asymptotic consistency)及漸近常態性(asymptotic normality)。 The inverse function of a distribution function has many applications in statistics. In practice, the inverse function is unknown and has to be estimated. The purpose of this paper is to discuss a kernel estimator $widehat{F}^{-1}(y)$ of the inverse function $F^{-1}(y)$ of a distribution function $F(x)$. Since the theoretical property of $widehat{F}^{-1}(y)$ is extremely complicated, we will investigate the asymptotic consistency and asymptotic normality of $widehat{F}^{-1}(y)$ via computer simulations.