English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64745/64745 (100%)
造訪人次 : 20464017      線上人數 : 379
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7952


    題名: On the Spectrum of Trees
    作者: 許立成;Li-Cheng Hsu
    貢獻者: 數學研究所
    關鍵詞: Bethe樹;$v$-symmetric eigenvector;symmetric eigenvector;skew symmetric vector;symmetric vector;$i$-level subtree of Bkn;Bethe tree;$i$-level set
    日期: 2009-03-26
    上傳時間: 2009-09-22 11:10:00 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 在1984年,Godsil 定義了 Bethe樹圖B(k,n),並求出其譜半徑 ho的上界滿足 $rho<2sqrt{k}$。在我們這篇論文中,我們找出Bethe樹圖的譜,利用此結論,我們又證明了任一樹圖T 的譜半徑滿足 $$sqrt{Delta}leq ho< min{2sqrt{Delta-1}cos{(frac{pi}{D+2})},2sqrt{Delta}cos{(frac{pi}{r+2})}},$$ 其中D,r,Delta分別為此樹圖的直徑,半徑,與最大度數。此下界等號成立只發生在當T為完全二部圖K_{1,Delta}時。 In 1984, Godsil defined the Bethe tree $B(k,n)$ and showed the spectral radius $ ho$ of $B(k,n)$ satisfies $ ho<2sqrt{k}$. In this thesis, we find the spectrum of $B(k,n)$. With this spectrum, we also show the spectral radius $ ho$ of a tree $T$ satisfies $$sqrt{Delta}leq ho< min{2sqrt{Delta-1}cos{(frac{pi}{D+2})},2sqrt{Delta}cos{(frac{pi}{r+2})}},$$ where $D$,$r$,$Delta$ are the diameter, radius, and the maximum degree of $T$ respectively. The equality of lower bound holds only when $T=K_{1,Delta}$.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown551檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋  - 隱私權政策聲明