摘要: | 本研究中是藉由調整溶膠-凝膠法的參數,製作出不同粒徑的二氧化矽(SiO2)小球,並將SiO2小球應用於有機發光二極體(OLED, Organic Light-Emitting Diode)與有機鈣鈦礦太陽能電池(PSC, Organic-inorganic Halide Perovskite Solar Cell),成功地提升了OLED與PSC的元件效率。 在OLED的研究中,我們結合單層小球鋪排技術以及乾蝕刻製程,所發展出的小球微影製程技術來製備圖案化銦錫氧化物(ITO)玻璃基板(PIS, Patterned ITO Substrate),並以此PIS製作出高出光效率的白光OLED。此外,藉由選擇單層鋪排時使用的小球粒徑,可製作出三種不同週期的PIS OLEDs (PIS-300 OLED、PIS-500 OLED與PIS-1000 OLED)。透過模擬結果與一系列的實驗分析可知,PIS OLEDs其元件效率的表現皆高於Planar OLED (對照組),且效率表現與PIS OLED的週期成反比。與Planar OLED相較之下,在注入元件之電流密度固定為20 mA/cm2時結構週期最小的PIS-300 OLED之操作電壓可下降約36%;此外當元件輝度值為5,000 cd/m2時,PIS-300 OLED之發光效率與外部量子效率可分別增益約228%及58%。 於PSC的研究中,我們利用奈米級圖案化氟參雜氧化錫(FTO)玻璃基板(NPFS, Nano-patterned FTO Substrate),製作出以甲胺三碘鉛酸鹽(CH3NH3PbI3)為吸光層的高效率PSC元件。研究中我們利用單層小球鋪排技術,配合小球曝光微影製程技術,可製作出三種不同深度的NPFS-PSCs (100 nm、150 nm與200 nm)。經由光學上與電性上的分析結果可知,NPFS-PSCs不僅能增加鈣鈦礦層的吸光量,也能透過FTO與電子傳輸層之間增加的接觸面積提高電子萃取率。與對照組的Planar-PSC相較之下,FTO蝕刻深度為200 nm的NPFS-PSC其光電流密度可由19.27 mA/cm2提升至23.81 mA/cm2,且能量轉換效率可由14.21%增益至17.85%。由上述的結果可知,將NPFS應用在CH3NH3PbI3係的PSC元件中能不僅能同時提升光捕捉率與電子萃取率,也為高效率的PSC提供了可靠且嶄新的研究方向。 ;In this study, we have synthesis the SiO2 sphere with variable diameters by tuning the recipes of sol-gel method, and successfully improve the efficiency via incorporating the spheres into an organic light-emitting diode (OLED) and an organic-inorganic halide perovskite solar cell (PSC). In terms of OLED, the output power enhancement of the white light OLED was demonstrated on a patterned indium tin oxide substrate (PIS) prepared via sphere lithography technique which consists of self-assembled monolayer SiO2 spheres and dry etching process. Herein, three different periods of PIS OLEDs (PIS-300 OLED, PIS-500 OLED and PIS-1000 OLED) were fabricated by selecting the diameter of deposited SiO2 spheres. Through simulation results and a series of experimental analyses, PIS OLEDs present better device performance than a Planar OLED (Control Sample), and the device performance was inversely proportional to the structural period of the PIS OLED. Compared with the planar OLED, the operating voltage of the PIS-300 OLED with smallest structural period of 300 nm was reduced 36% at an injection current density of 20 mA/cm2. Consequently, the luminous efficiency and external quantum efficiency of PIS-300 OLED can statically enhanced 228% and 58% at the luminance of 5,000 cd/m2. In terms of PSC, a CH3NH3PbI3-based perovskite solar cell (PSC) with high power conversion efficiency (PCE) has achieved by incorporating a nano-patterned fluorine-doped tin oxide (FTO) substrate (NPFS). This NPFS-PSC was prepared with different structural depths (100 nm, 150 nm, and 200 nm) using both self-assembly and sphere lithography techniques. As determine through the optical and electrical analysis of different PSC devices, the NPFS-PSCs not only display the enhanced light absorption (due to the two-dimensional diffraction grating) but also improve the electron collection efficiency by increasing the FTO/electron transport layer (ETL) and ETL/perovskite effective interface. Compared to a planar PSC (Control Sample), the photocurrent density of the 200-nm-etched NPFS-PSC is enhanced from 19.27 mA/cm2 to 23.81 mA/cm2 leading to an increase in the power conversion efficiency from 14.21% to 17.85%. These results indicate that introducing the NPFS into the CH3NH3PbI3-based PSC can improve both light harvesting and electron extraction efficiency and, therefore, represents a novel, promising, high-performance photovoltaic device. |