中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/79588
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41641226      在线人数 : 1427
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/79588


    题名: 基於希爾伯特-黃轉換的自動化卷積神經網路心律不整偵測系統;Automated Arrhythmia Detection using Hilbert-Huang Transform Based Convolutional Neural Network
    作者: 林子嘉;Lin, Tzu-Chia
    贡献者: 資訊工程學系
    关键词: 心律不整;卷積神經網路;Arrhythmia;Convolutional Neural Network
    日期: 2019-03-19
    上传时间: 2019-04-02 15:04:12 (UTC+8)
    出版者: 國立中央大學
    摘要: 醫療科技的進步為早期的疾病偵測提供了更多元的方法,但生理訊號
    的複雜性和對專業領域的依賴性也讓實際偵測上碰到許多困難。為了找出一個自動化且能正確判斷心律不整的方式,本篇論文提出了一個結合
    Hilbert-Huang Transform 以及 Convolutional Neural Networks 的心電圖判別架構。透過 Hilbert-Huang Transform 來處理複雜且非平穩的生理訊號並轉換出 Hilbert Spectrum,再使用 Hilbert Spectrum 以訓練 Convolutional Neural Networks Model 來學習其特徵並判別心律不整的類別。最後透過實驗結果以驗證透過機器學習取代傳統由專家判別特徵的可行性及效率,同時分析所提出架構的準確度並加以探討。;In this thesis, a novel approach to arrhythmia-based signal classification is introduced. The objective is to properly identify three classes of patients exhibiting normal sinus rhythm, atrial fibrillation, and other rhythm. The proposed method apply Hilbert-Huang transform on raw signal to generate noise-free reconstruction of the original containing temporal variations as input for classification mechanism to learn representative features. The features are directly learned by a computer vision technique known as Convolutional Neural Network, thus replacing traditional methods of relying on experts to handcraft features. To summarize, this thesis contains two major processes: utilize a nonlinear and non-stationary signal processing technique to produce input, and to feed reconstructed signal containing representative features to CNN for multi-classification task. The experimental results indicate the effectiveness of this method, removing the need of human involvement in the process of feature selection. Through analyses and stimulations, the effectiveness of the proposed ECG-classification method is evaluated.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML218检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明