English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65318/65318 (100%)
Visitors : 21729090      Online Users : 276
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/79636


    Title: 影像模糊方法在蝴蝶辨識神經網路中之應用;Application of Image Blurring Method in Butterfly Identification Neural Network
    Authors: 李政瑜;Lee, Cheng-Yu
    Contributors: 數學系
    Keywords: 神經網路
    Date: 2018-10-30
    Issue Date: 2019-04-02 15:09:35 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究旨在探討深度學習模型”多層感知神經網路”及”卷積神經網路”在圖像辨識上的訓練結果比較,也研讀當今常用的優化算法,熟知損失函數對參數更新的影響關係,兩個模型訓練將以蝴蝶圖片進行實作。
    經由線上開放的圖片庫網站,取得9141張共五類蝴蝶,並自製成數據樣本集,分別帶入兩個深度模型,透過自行建立隱藏層結構,觀察兩者訓練時間及訓練準確率,在迭代結果上分析擬合情形。而後再進一步引入PCA降維方法,對數據預處理,看看對於圖片背景降維效果能否提高訓練或驗證準確度。
    ;The goal of this thesis is to explore the training results of two deep learning models "multilayer perceptual neural network" and "convolution neural network" in image recognition, and study the popular optimization algorithms. To this topic, we study the influence of loss functions on iterative parameters, and demonstrate two models with the pictures of butterflies.
    There are five types of butterflies with 9141 pictures obtained through the online database website. We use these pictures for the files of data samples to two deep learning models, and observe the training time and accuracy by establishing the hidden layers. Then, we analyze the fitting situation to the iterative results. Finally, by using principle component analysis(PCA) in dimension reduction method, we preprocess the data and observe the reduction effect of the image background so that we can improve the training or verification accuracy.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML14View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明