English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22919583      Online Users : 161
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/79642

    Title: 生成對抗網路在影像填補的應用;Application of Generative Adversarial Networks to Image Inpainting
    Authors: 江建衛;Wei, Jiang Jian
    Contributors: 數學系
    Keywords: 神經網路;類神經網路;卷積神經網路;生成對抗網路;影像填補;電腦視覺;深度學習;人工智慧;neural network;artificial neural network;convolutional neural network;generative adversarial network;image inpainting;computer vision;deep learning;artificial intelligence
    Date: 2019-01-21
    Issue Date: 2019-04-02 15:09:59 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本文主要運用 Pathak et al. [13] 和 Iizuka et al. [6] 的基本思想,重新建構一個影像填補的生成對抗網路。在硬體設備運算能力的侷限下,我們建置出一個層數較少的神經網路模型,用來達成某些較為簡單的影像填補任務,例如填補主題較單一而且遺失區域比例較低的情況,而本文的主要目標是進行影像中心遺失小區域時的填補工作。為了實現這個目標,我們採用 Goodfellow et al. [4] 提出的生成對抗網路的想法,運用生成網路與對抗網路的相互競爭以加強填補的效能。更明確地說,我們使用卷積層來建構網路,其中生成網路的部分使用 Iizuka et al. [6] 所提到的擴張卷積 [17]。同時,我們採用了 Ioffe 和 Szegedy [7] 的想法,除了最後一層外,所有網路的每一層後都添加標準化層以增強網路的訓練效果。最後模擬實驗結果顯示,我們的生成對抗網路模型可以相當有效地達成主要的填補任務。;Based on the works of Pathak et al. [13] and Iizuka et al. [6], in this thesis, we introduce a simple generative adversarial network approach for image inpainting.
    Considering the limitation of computational capacity, we build a simplified model which is able to reconstruct lost or deteriorated parts of images with single context and small missing region. In order to generate the image content of missing region, we mainly employ the generative adversarial network approach proposed by Goodfellow et al. [4]. More specifically, the proposed neural network consists of convolutional layers, where the dilated convolution is used in the generative network. In addition, except the output layer, each layer is equipped with a normalization layer [7] to enhance the overall efficiency of the network. Numerical experiments are performed to demonstrate the good performance of the simplified generative adversarial network for image inpainting.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明