English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65318/65318 (100%)
Visitors : 21719447      Online Users : 346
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/79643


    Title: 影響蝴蝶辨識模型能力之因素探討與比較;Discussion and comparison of factors affecting the ability of butterfly identification model
    Authors: 鄭皓友;Cheng, Hao-Yu
    Contributors: 數學系
    Keywords: 深度學習;影像辨識;卷積神經網路;dropout;池化層;優化演算法;Deep Learning;Image recognition;Convolutional neural network;dropout;pooling layer;optimization algorithm
    Date: 2019-01-21
    Issue Date: 2019-04-02 15:10:02 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 影像辨識是人工智慧中的熱門領域,可以應用在許多地方,例如手寫數字辨識、車牌辨識、人臉辨識、物體辨識等等。使用深度學習的方法可以有效的提取特徵且降低人力成本,但要創造出一個好的分類模型需要考量很多因素。例如:合適的模型架構,合適的優化方法、合適的參數設定等等。
    本實驗的蝴蝶圖像取自ImageNet,且使用卷積神經網路的方法建構蝴蝶辨識模型,並選定幾種可能影響蝴蝶辨識模型的因素作為探討與比較的對象。由實驗結果發現,dropout比例的大小、池化層的大小與擺放位置、相異的優化演算法及相異的卷積層層數皆會影響蝴蝶辨識模型的能力。因此,在建構模型時,這些因素都須慎重選擇,不可忽視它們對模型的影響力。
    ;Image recognition is popular in artificial intelligence and can be applied to many fields, such as handwritten digit recognition, license plate recognition, face recognition, object recognition and so on. Using deep learning methods can effectively extract features and reduce costs. But, creating a good classification model requires consideration of many factors. For example: the appropriate model architecture, the appropriate optimization method, the appropriate parameter settings, and so on.
    The butterfly images of this experiment are taken from ImageNet, and the butterfly identification models are constructed by the convolutional neural network. Several factors that may affect the butterfly identification model are selected as the objects of discussion and comparison. It is observed from the experimental results that the size of the dropout ratio, the size and placement of the pooling layer, the different optimization algorithms and the different layers of convolution layers all affect the ability of the butterfly identification model. Therefore, when constructing the model, these factors must be carefully chosen, and their influence on the model cannot be ignored.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML14View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明