English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78111/78111 (100%) Visitors : 29768117      Online Users : 342
 Scope All of NCUIR 理學院    數學研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 NCU Institutional Repository > 理學院 > 數學研究所 > 博碩士論文 >  Item 987654321/7966

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/7966`

 Title: Studies on Fractional Brownian Motion: Its Representations and Properties Authors: 吳恕銘;Shu-Ming Wu Contributors: 數學研究所 Keywords: 分數布朗運動;分數微積分;fractional calculus;fBm Date: 2009-06-16 Issue Date: 2009-09-22 11:10:23 (UTC+8) Publisher: 國立中央大學圖書館 Abstract: 分數布朗運動的表現是以分數微積分作基礎。在本篇文章裡我們 會先討論到分數微積分的定義以及性質，包括存在性、函數的微分與 積分的不同表示法、互為反算子、以及半群性質。再來，利用維納積 分定義分數布朗運動，並且利用分數微積分展示出分數布朗運動的核 的不同的表示法。文章的末了我們也會討論一些有關分數布朗運動的 一些性質。 In this thesis, we discuss the representations of fractional Brownian motion (fBm) and properties of fBm. We name it “fractional” because the kernels can be represented by fractional calculus. My thesis has three contributions. First, we show some properties about fractional calculus, including existence, various expressions of derivative and integral of function, inverse operators, and semigroup property. Second, we propose to use fractional calculus to indicate fBm and different representations of kernels. Finally, we show some properties of fBm in the end of this thesis. Appears in Collections: [數學研究所] 博碩士論文

Files in This Item:

File SizeFormat