摘要: | 近年來隨著半導體產業的快速發展,生產半導體的技術也逐漸地遇到瓶頸。於是,製作微結構物的工業技術,開始往其他的方向尋找創新的靈感。半導體產業通常為極度高精密的平面雕刻技術,舉凡,化學氣相沉積、物理氣相沉積、微影蝕刻、光刻等。而近年來快速發展的立體微結構物製作技術,像是3D列印、3D金屬列印等,也是克服了許多以前無法跨越的障礙,成為新趨勢,而本論文將探討與3D金屬列印相似的局部電化學技術。 半導體產業已然行之有年,而目前的精度已經達到奈米等級。卻並非所有和半導體相關的產品都需要如此高的精度,局部電化學技術能提供微米等級的製作工藝。 為了探討,局部電化學的可能性。本論文的第一部分,將探討在特定規格的陽極下,陽極的電壓對於沉積物的尺寸關係,來找到局部電化學在特定環境下,可以達到的精度。 第二部分則是嘗試使用雙陽極製作出雙螺旋結構物。而本實驗室的邱永傑學長在2016年時已經可以製作出單螺旋的結構物,而本研究將基於Labview開發一套有別於過去的C++的演算軟體,追求響應更快、開發容易、且能製作更複雜的雙螺旋結構物的控制法。 關鍵字: 局部電化學、即時影像處理、四軸運動控制、Labview;In past years, Semiconductor technology is rapidly developed. Most of Semiconductor products were made by PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), photolithography, lithography, etc. However, in recent years, for fabricated complex 3D microproducts, 3D printing and DMP (Direct Metal Printing) gradually become a new trend. In this research, we provide a technology, LECD (Localized Electrochemical Deposition), which is cheaper, environmental friendship, and efficiency than semiconductor technology. First part of this research is to find out the possibility of LECD. We measure the precision of LECD system in this research environment. Second part of this research, we try to use double anode to make a double-helix structure. In 2016, our lab already fabricated a helical string. In this year, we developed a brand new program based on Labview to fabricate a double helix microstructure. Compared to C++, it is easier to develop, and the responding speed is quicker. We expect it could provide us a high quality fabrication of microstructures. Keywords: Localized electrochemical deposition (LECD); Labview; Four-axis machine; Real-time image processing. |