English  |  正體中文  |  简体中文  |  Items with full text/Total items : 76531/76531 (100%)
Visitors : 29683916      Online Users : 179
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7970

    Title: An Inexact Newton Method for Drift-Diffusion Model in Semiconductor Device Simulations
    Authors: 湯惟策;Wei-tse Tan
    Contributors: 數學研究所
    Keywords: semiconductor;GMRES;finite difference;drift-diffusion;Newton's method;drift-diffusion;Newton's method;finite difference;GMRES;semiconductor
    Date: 2009-07-09
    Issue Date: 2009-09-22 11:10:30 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 本篇論文針對半導體儀器作數值模擬,運用 inexact Newton's method 對 drift-diffusion model 求解。考慮原型的 drift-diffusion model 包含:電子電壓,電子濃度,電洞濃度等三個未知變數。數值實驗使用 drift-diffusion model 模擬一個一維的二極體幾何模型。我們討論兩個不同的 non-dimensionalization approach 對 Newton's method 的影響並分析 GMRES method 使用不同的 preconditioner 在 Newton's method 的結果。實驗結果顯示使用不同的 non-dimensionalization approach 將影響 Newton's method 的收斂情形。在實驗中我們使用 US non-dimensional approach (Uniform Scaling non-dimensional approach) 有效的提供 Newton's method 一個良好的環境。根據實驗結果發現增加 block Jacobi preconditioner 中 block 的數量幾乎不影響 Newton's method 的迭代次數,更甚者即便是增加網格點的數目 Newton's method 的迭代次數依然不受影響。 The aim of this thesis to employ an inexact Newton's method to solve discrete drift-diffusion model in semiconductor device simulations, where the drift-diffusion model in the primitive form consists of the electrostatic potential , the electron concentrations and the hole concentrations. Consider a 1D diode simulations modeled by drift-diffusion as a test case. We discuss the effect on Newton's method by two non-dimensionalization approaches and the application of GMRES method without/ with diagonal and block Jacobi. It is true that the non-dimensional approach will affect the converge of Newton's method. In our case, we choose US non-dimensional approach (Uniform Scaling non-dimensional approach) and it will make a great environment for Newton's method. From numerical experiment, we find that increasing number of blocks for a block Jacobi preconditioner almost doesn't affect the number of Newton's iterations and decreasing grid size for a block Jacobi preconditioner also doesn't affect the Newton's iterations neither.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明