English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23247644      Online Users : 410
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7971

    Title: 四階方陣的高秩數值域;Higher-Rank Numerical Ranges of 4-by-4 Matrices
    Authors: 彭煜釗;Yu-Jhau Peng
    Contributors: 數學研究所
    Keywords: 數值域(Numerical Range);高秩數值域(Higher-Rank Numerical Range);Kippenhahn Curve;Kippenhahn Curve;Higher-Rank Numerical Range;Numerical Range
    Date: 2009-06-02
    Issue Date: 2009-09-22 11:10:32 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 本論文探討一個四階方陣A,其高秩數值域的幾何圖形是什麼樣的圖形。我們將四階方陣的秩二數值域分類。對於一個四階方陣A,我們經由考慮A的associated polynomial來對秩二數值域作分類。對於每一個分類,我們將完整地描述它們的幾何圖形。 Let $A$ be an $n$-by-$n$ matrix. For $1leq k leq n$, the rank-$k$ numerical range of $A$ is defined and denoted by $Lambda_k(A) = {lambdainmathbb{C}: PAP=lambda P mbox{ for some rank-{it k} orthogonal projection $P$}}$. In this thesis, we give a complete description of the higher-rank numerical ranges of $4$-by-$4$ matrices. We classify the rank-$2$ numerical ranges of $4$-by-$4$ matrices. Our classification is based on the factorability of the associated polynomial $p_A(x,y,z)equiv mathrm{det}(xmathrm{Re,}A + ymathrm{Im,}A + zI_4)$ of a $4$-by-$4$ matrix $A$. For each class, we also completely determine the shape of the rank-$2$ numerical range of a $4$-by-$4$ matrix.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明