English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64745/64745 (100%)
造訪人次 : 20504039      線上人數 : 367
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7972


    題名: 可壓縮流中微黏性尤拉方程激波解的行為;Inner solutions for the viscous shock profiles of compressible Euler equations in a variable area duct
    作者: 蘇承芳;Cheng-Fang Su
    貢獻者: 數學研究所
    關鍵詞: 守恆律;可壓縮尤拉方程;微黏性激波;奇異擾動;內部解;外部解;inner solutions;conservation laws;viscous shock profiles;compressible Euler equations;outer solutions;singular perturbation
    日期: 2009-05-15
    上傳時間: 2009-09-22 11:10:33 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 本論文中,我們考慮的是在可變面積輸送管內的可壓縮、具微黏性之尤拉方程。藉著奇異擾動下的漸近展開式技術,我們可由黏性係數的階來研究此微黏性激波的內部解行為。此外,我們亦證明出O(1)與O(ε)之內部解方程可被修正成積分微分方程的形態,利用收縮映射原理,就可建立兩點邊界值問題解之存在性與唯一性。 In this paper we consider the viscous compressible Euler equations in a variable area duct. By the technique of asymptotic expansions in singular perturbations, we study the inner solutions of the viscous shock profiles. The equations for inner solutions with respect to the power of viscous constant are derived. We show that the equations of inner solutions of O(1) and O(ε) can be modified to the scalar integro-differential equations. The existence and uniqueness of solutions for such two point boundary value problems are established by contraction mapping principle.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown532檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋  - 隱私權政策聲明