English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75982/75982 (100%)
Visitors : 28193273      Online Users : 258
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7972

    Title: 可壓縮流中微黏性尤拉方程激波解的行為;Inner solutions for the viscous shock profiles of compressible Euler equations in a variable area duct
    Authors: 蘇承芳;Cheng-Fang Su
    Contributors: 數學研究所
    Keywords: 守恆律;可壓縮尤拉方程;微黏性激波;奇異擾動;內部解;外部解;inner solutions;conservation laws;viscous shock profiles;compressible Euler equations;outer solutions;singular perturbation
    Date: 2009-05-15
    Issue Date: 2009-09-22 11:10:33 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 本論文中,我們考慮的是在可變面積輸送管內的可壓縮、具微黏性之尤拉方程。藉著奇異擾動下的漸近展開式技術,我們可由黏性係數的階來研究此微黏性激波的內部解行為。此外,我們亦證明出O(1)與O(ε)之內部解方程可被修正成積分微分方程的形態,利用收縮映射原理,就可建立兩點邊界值問題解之存在性與唯一性。 In this paper we consider the viscous compressible Euler equations in a variable area duct. By the technique of asymptotic expansions in singular perturbations, we study the inner solutions of the viscous shock profiles. The equations for inner solutions with respect to the power of viscous constant are derived. We show that the equations of inner solutions of O(1) and O(ε) can be modified to the scalar integro-differential equations. The existence and uniqueness of solutions for such two point boundary value problems are established by contraction mapping principle.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明