摘要: | 本論文主要可以分為有機薄膜電晶體 (OTFTs)、有機光伏打電池 (OPVs)、 電洞傳輸層 (HTL)的材料開發 。 本研究成功開發出兩個新型含不對稱碳鏈之吡咯併 吡咯二酮 單元 的 n 型有機薄膜電晶體材料,DPP’Q 10 (1) 與 DPP’Q 14 (2)。 Diketopyrrolopyrrole (DPP)單元 具有高的平面性及其有缺電子的性質和形成氫鍵的能力 導致其有很強的 π π stacking作用及分子內電荷轉移作用,為一良好之 OTFT的核心 。 本研究將以往 DPP核心上兩對稱的具支鏈的長 碳鏈改為不一樣的碳鏈,將其中一碳鏈改為直鏈的長碳鏈 ,期望能藉由兩長支鏈的立體障礙的降低,使此材料在成膜時有更佳的堆疊,進而改善薄膜的結晶性及元件的電性效能。 另一方面,也成功以 DPP為單元並利用微波加熱合成出一個六併 環新核心 BTI,其併環結構相較於 DPP單元具有更延伸的共軛長度, 未來會將此新核心應用於有機薄膜電晶體材料的開發中。 有機光伏打電池部分,以 CDT 為單元,開發出一新核心 雙聯 CDT的 BCDT 單元 ,並將此新核心分別接上末端 拉電子基團 為 羅丹 寧 Rh 與茚酮 IN 製備出兩 個新型 可溶性非 富勒烯 有機光伏打太 陽能電池材料 RhBCDT (3)、 INBCDT (4)。 預期以 多併環 噻吩為核心能有助於電荷轉移進而提高載子移動率 ,於多環的核心架構中引入分支的碳鏈以確保分子之溶解度,並避免元件製備成膜時分子之堆疊 分支的碳鏈以確保分子之溶解度,並避免元件製備成膜時分子之堆疊嚴重,嚴重,使元件效能有效提升使元件效能有效提升。 電洞傳輸層的部分,開發以吡咯併以吡咯併吡咯二酮吡咯二酮 (DPP)為核心之小分子材料,TPA-DPP-b8 (5),因核心具 N 之原子亦同時具拉電子基團,此材料之 HOMO/LUMO電位與其它常見之電洞傳輸層材料較不同,其HOMO可高達 -4.88 eV,期望應用於Pb-based 的鈣鈦礦太陽能電池中,能有效提升光電轉換效率。;A series of new organic optoelectronic materials were synthesized and characterized for organic thin film transistors (OTFTs), organic photovoltaic cells (OPVs), and hole transporting layer (HTL). For n-type OTFTs, n-type small molecules, DPP’Q-10 (1; R= b-C20H41, C10H21) and DPP’Q-14 (2; R= b-C20H41, C14H29), were synthesized and characterized. DPP is a superior core for OTFT, since the planar core structure, electron deficient nature, and ability to form hydrogen bonds, resulting in strong π-π stacking interactions. Two new DPP-based small molecules, DPP’Q-10 (1) and DPP’Q-14 (2), with the asymmetrical side chains were developed. The replacement of bulky branching chains with linear ones should reduce the steric hindrance of the long alkyl chains, which might lead to the improvement of alkyl chain packing order, thin film crystallinity, and therefore, the charge mobilities. On the other hand, a new bisthiophene-fused diketopyrrolopyrrole unit, BTI, was synthesized by microwave, which will be served as a new core in organic thin film transistors in the future. For the organic photovoltaics, One CDT derivative, BCDT, was served as a central core and was end capped with electron withdrawing groups, such as rhodamine (Rh) or dicyanomethylene indanone (IN). Via knoevenagel condensation, two new materials RhBCDT (3) and INBCDT (4) were prepared. For hole transporting layer materials, a DPP-based small molecular TPA-DPP-b8 (5) was synthesized, which will be tested in Pb-based perovskite solar cells for power conversion efficiency improvement. iv The optical and electrochemical properties (HOMO and LUMO) of these new materials were characterized by UV-vis and DPV. Thermal properties were investigated by DSC and TGA. Optoelectronic devices used these new developed small molecules are under optimization. |