本篇論文主要探討在不同太陽閃焰相位發生的第三型無線電波爆(Type III solar radio burst)之間的差異性,並深入分析閃焰前第三型無線電波爆。我們使用的觀測資料包含Solar Broadband Radio Spectrometer(SBRS)的2.6~3.8 GHz資料和Solar Dynamic Observatory/Atmospheric Imaging Assembly(SDO/AIA)的EUV影像。 第三型無線電波爆是由被加速非熱電子束在太陽日冕層或是行星際空間運動所造成,訊號頻率越高代表訊號源區越靠近太陽表面,且第三型無線電波爆經常伴隨太陽閃焰發生,因此我們利用SBRS的高頻段動態頻譜圖,分析太陽閃焰不同相位的第三型無線電波爆的物理參數特性,包括:頻帶寬、頻率漂移率、持續時間、強度和偏振度。經過統計,我們發現比起其他相位,閃焰前第三型無線電波爆的持續時間較長、頻帶寬較大、強度較弱。 另一方面,我們針對太陽閃焰發生前的第三型無線電波爆事件,分析無線電波爆與太陽源區的時空關聯性。我們利用94 Å、171 Å和211 Å來估算高溫電漿(7 MK)的變化情形。我們發現EUV增亮現象是來自於較高溫的電漿,並且有一半以上的閃焰前第三型無線電波爆的發生時間與高溫電漿達到局部峰值的時間相近。因此,閃焰前第三型無線電波爆事件的結果代表在太陽閃焰發生前有小尺度的能量釋放。 ;The purpose of this study is to investigate the difference of the characteristics of type III solar radio bursts in different phases of solar flares. We use the dynamic spectrum observed by Solar Broadband Radio Spectrometer (SBRS) in the frequency range of 2.6-3.8 GHz and the EUV image observed by Solar Dynamic Observatory/Atmospheric Imaging Assembly (SDO/AIA). Type III solar radio bursts are believed to be produced by the non-thermal electron beams propagating in solar corona and interplanetary. The high-frequency type III radio bursts are produced at the region of high plasma density close to solar surface. Moreover, type III radio bursts are often associated with solar flares. In this study, we analyze the characteristics of type III bursts (bandwidth, duration, drift rate, intensity, and polarization) observed by SBRS in the three stages of solar flares, i.e., the pre-flare, impulsive phase and gradual phase. Our results show that the pre-flare type III has a longer duration, wider bandwidth and weaker intensity than those in the impulsive and gradual phases. In particular, we analyze the temporal correlation between pre-flare type III bursts and EUV emissions at solar source regions. We estimate the Fe XVIII line formed at 7 MK using AIA 94 Å, 171 Å and 211 Å. Then, all EUV brightening is attributable to plasma at 7 MK, and related with more than half pre-flare type III. Thus, the pre-flare type III events imply the existence of small-scale energy release before flares.