English
| 正體中文 |
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42804151 線上人數 : 1038
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by
NTU Library IR team.
搜尋範圍
全部NCUIR
資訊電機學院
通訊工程研究所
--博碩士論文
查詢小技巧:
您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
進階搜尋
主頁
‧
登入
‧
上傳
‧
說明
‧
關於NCUIR
‧
管理
NCU Institutional Repository
>
資訊電機學院
>
通訊工程研究所
>
博碩士論文
>
Item 987654321/8052
資料載入中.....
書目資料匯出
Endnote RIS 格式資料匯出
Bibtex 格式資料匯出
引文資訊
資料載入中.....
資料載入中.....
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/8052
題名:
類神經網路在手寫數字辨識之研究
;
Neural Network in number handwriting recognition
作者:
陳緯達
;
Wei-Da Chen
貢獻者:
通訊工程研究所
關鍵詞:
類神經網路
;
手寫辨識
;
字元辨識
;
特徵抽取
;
handwriting
;
GFNN
;
SIANN
;
recognition
日期:
2004-07-05
上傳時間:
2009-09-22 11:16:52 (UTC+8)
出版者:
國立中央大學圖書館
摘要:
自從類神經網路被發明以來,其中的多層感知器被應用的範圍是最廣亦最為熱門。但多層感知器(Multi-Layer Perceptron,MLP)本身隱藏層類神經元的架構過於簡單,而有收斂速度過慢等問題。本篇論文將提出以分流式抑制類神經網路(Shunting Inhibitory Neural Networks,SIANN)及一般化前饋式類神經網路(Generalized Feedforward Neural Networks,GFNN)配合傳統的倒傳遞演算法(Back-Propagation Algorithm)來進行手寫數字辨識的研究,並與傳統的多層感知器進行相互間的比較。我們採用了MNIST數字資料庫當成辨識與測試的輸入資料來源,本文尚有文字切割、正規化等介紹,並以方向性距離分佈(Directional Distance Distribution,DDD)作為特徵抽取的方式,可以表現字型的結構性及整體性,達到高準確的辨識率。經實驗證明,SIANN雖然辨識率比MLP要差,但其收斂速度優於MLP;而GFNN的辨識率及收斂速度都優於MLP及SIANN,可達到98.4%的辨識率。 .
顯示於類別:
[通訊工程研究所] 博碩士論文
文件中的檔案:
檔案
大小
格式
瀏覽次數
在NCUIR中所有的資料項目都受到原著作權保護.
社群 sharing
::: Copyright National Central University. | 國立中央大學圖書館版權所有 |
收藏本站
|
設為首頁
| 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
DSpace Software
Copyright © 2002-2004
MIT
&
Hewlett-Packard
/
Enhanced by
NTU Library IR team
Copyright ©
-
隱私權政策聲明