English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23107238      Online Users : 116
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/80550

    Title: 以表面活化官能基增進塑膠基板附著性之研究;Improving the adhesion of plastic substrate by surface-activated functional groups
    Authors: 石晉羽;Shih, Jin-Yu
    Contributors: 光電科學與工程學系
    Keywords: 表面活化;塑膠鍍膜;附著性
    Date: 2019-07-17
    Issue Date: 2019-09-03 14:44:32 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來隨著車用電子智慧化的趨勢蓬勃發展,以塑膠作為車用顯示面板的基材有著成本低廉、良好光學特性、抗腐蝕等得天獨厚的產品價值;然而,與玻璃相比之下,塑膠基板與薄膜之間的附著性不佳,且易吸收水氣,影響鍍膜的環境,進而造成脫膜的情況。
    ;In recent years, with the development of smart automotive electronics, the use of plastic as a substrate for automotive display has a unique product value of low cost, good optical properties, and corrosion resistance. However, compared with glass, the adhesion for plastic between the substrate and the film is worst due to it low surface energy. Moreover, it is easily absorb some water contents on its surface, causing the out-gassing during the deposition process.
    In order to solve the above problem of plastic coating, the study performs a baking treatment for plastic substrate before thin film deposition, and establishes an experimental method for removing the water contents in a short time. The surface of the plastic is modified by an ion source to increase the number of surface functional groups, greatly improve the adhesion of the substrate surface to the film. The functional groups are measured by FTIR. We also deposited an oxygen-deficient thin film as an interlayer between substrate and anti-reflective(AR) coating.
    Finally, the plastic substrate treated by baking, surface activation, and adhesion layer deposition can pass the high temperature/humidity environmental test for 1000 hours without thin films peeling.
    Appears in Collections:[光電科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明