English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23134162      Online Users : 390
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81039

    Title: 以非週期性晶疇極化反轉鈮酸鋰晶體實現多波長光參量振盪器之電光選頻研究;Electro-optically spectral-line switchable in mutil-line optical parameter oscillators based on aperiodically poled lithium niobate
    Authors: 王泰傑;Wang, Tai-Jie
    Contributors: 照明與顯示科技研究所
    Keywords: 鈮酸鋰;光參量振盪器;電光選頻;非週期性晶疇極化反轉鈮酸鋰;lithium niobate;optical parameter oscillators;switchable;periodically poled lithium niobate
    Date: 2019-08-20
    Issue Date: 2019-09-03 15:26:41 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 光參量振盪器為三波長非線性光學下轉換系統,經常被使用在廣域的波段可調同調光源,因而在光通訊、光譜學、光學檢測及兆赫波產生等領域上有廣泛的應用。在鈮酸鋰晶體上,藉由使用準相位匹配技術,不但可以使光參量振盪器具有高度自由的波長設計範圍,並且也能利用最大非線性係數。
    ;An optical parametric oscillator (OPO) is a three-wave nonlinear wavelength down conversion system, which is often used as a wide band tunable coherent radiation source and thus has been widely used in optical communication, spectroscopy, optical inspection, and other applications. The use of the quasi-phase-matching (QPM) technique in lithium niobate (LiNbO3) crystals not only allows the OPO signals to be highly engineerable in a wide spectral range, but also largely enhances the conversion efficiency due to the access of the maximum nonlinear coefficient d33 of the crystal.
    By properly utilizing the electro-optic (EO) effect in a QPM LiNbO3, we can modulate the polarization state of an or multiple input waves, in which the spectrum and bandwidth of OPO signals can be changed, tailored, or/and selected when such an EO QPM polarization mode converter (PMC) is operated with the OPO.
    In this study, a multi-wavelength EO PMC and a multi-wavelength optical parametric down converter (OPDC) were successfully integrated in a single aperiodically poled lithium niobate (APPLN) chip. The OPDC and EO PMC were both designed to work at dual wavelengths 1540 nm and 1550 nm in an optical communication band. When this novel integrated APPLN crystal is operated in an optical resonator pumped by a Q-switched 1064-nm laser, we can generate the dual-wavelength signal (of ~0.5 nm linewidth) with this OPO system before any external electric field is applied to the APPLN. When applying electric fields of 360 V/mm and 790 V/mm to the APPLN device, we can select and oscillate only the 1540 nm and only the 1550 nm signals with linewidths of 0.07 nm and 0.09 nm, respectively, in the novel OPO system. The consistency of the simulation and the experimental results show that we have successfully demonstrated the world-first EO frequency selectable mutil-line OPO based on an integrated APPLN in the optical communication band.
    Appears in Collections:[照明與顯示科技研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明