近年來由於深度學習網路的蓬勃發展,被廣泛應用於電腦視覺與圖形別的領域中,也因為人工智慧的發展,透過建置智慧化的系統,能夠有效幫助人類處理簡單且重複性高的問題.本篇論文實作一個自動化錯誤場景偵測系統,能夠有效取代以往以人工方式檢測地標圖像資料庫之正確性的過程,以節省人力成本. 在自動化錯誤場景偵測的系統中,我們提出了錯誤場景偵測演算法,以解決偵測錯誤場景的問題,並且基於此系統架構,我們提出了多級別特徵擷取器(Multiple Level Extractor),透過擷取場景圖中不同級別的特徵,改善了Resnet50網路架構的特徵提取效果,以及多尺度距離度量(Multiple Scale Distance Measurement),在給定的特徵擷取器之下,總和了在多種不同尺度下之特徵距離,能夠將系統之效能再提升. 最後,基於本系統的架構下,我們實驗了系統在不同的特徵擷取器與距離度量方式之下,影響系統效能之變化程度.;In recent years, due to the vigorous development of deep learning networks, deep learning has been widely used in the field of computer vision and graphic recognition. Because of the development of artificial intelligence, through the establishment of intelligent systems, it can effectively help humans to handle simple and repetitive problem. We propose an automated incorrect scene detection system. which can effectively replace the process of manually detecting the correctness of the landmark image database to save human resources costs. In the system of automatic incorrect scene detection, we propose an incorrect scene detection algorithm to solve the problem of detecting incorrect scenes, and based on this system architecture, we propose a MLE (Multiple Level Extractor). By extracting different levels of features in the scene image, improved the feature extraction effect of the Resnet50 network architecture. In addition, we also propose MSD(Multiple Scale Distance) measurement, which sums the feature distances at various scales under a given feature extractor. MSD also improved the performance of the system. Finally, based on the architecture of the system, we experimented with the system under different feature extractor and distance measurement methods , which affect the degree of system performance change.