English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 40710215      線上人數 : 883
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/81098


    題名: 使用句對模型在文章中抓取相關資訊用於問題生成;Using Sentence Pair Model to Capture Relevant Information from Document for Question Generation
    作者: 李哲豪;Li, Che-Hao
    貢獻者: 資訊工程學系
    關鍵詞: 問題生成;閱讀理解;序列到序列;注意力機制;複製機制;句對模型;深度學習;Question Generation;Reading Comprehension;Sequence to Sequence;Attention Mechanism;Copy Mechanism;Sentence Pair Model;Deep Learning
    日期: 2019-07-23
    上傳時間: 2019-09-03 15:34:25 (UTC+8)
    出版者: 國立中央大學
    摘要: 近幾年問題生成的研究發展迅速,過去以句子的語法結構定義規則生成問題,隨著深度學習成熟的技術,現今機器能理解語意並自動產生適當的問題。

    問題生成的目標是給定一段文字訊息與答案,產生相對應的問題,與機器閱讀理解任務類似,因此閱讀理解的資料集常被用在問題生成任務中。以往問題生成模型的輸入並非整篇文章,而是包含答案的句子,但有些問題的內容和答案不在同一個句子,可能是依據其他句子資訊產生該答案的問題,於是本論文提出一個新架構,由句對模型和問題生成模型所組成,利用句對模型處理文章結構,將每一句資訊與包含答案的句子進行匹配,計算各自的相關程度並且重新賦予句子權重,接著傳送到問題生成模型產生最終的問題。句對模型主要目的是從整篇文章中自動找尋和答案有關的內容進而產生適合的問題。

    實驗結果表示,我們的系統能有效處理文章結構,相比只有問題生成模型的系統,在中文和英文的資料集都有更好的表現。;In recent years, question generation (QG) has developed rapidly. In the past, using rules that are based on syntactic structure to generate questions. Nowadays, the machine can understand semantic and automatically generate appropriate questions with a proven technique of deep learning.

    Question generation aims to generate corresponding questions from a given passage and answer. It is similar to machine reading comprehension (RC) task. Therefore, reading comprehension dataset is often used to question generation task. The input of the previous question generation model is the sentence containing the answer rather than the whole article. However, the content of some questions and its answers are not in the same sentence. The question may be based on other information in sentences. Then, our paper proposed a new framework which consists of sentence pair model and question generation model. Using the sentence pair model to process article structure. Its method is matching each sentence and the sentence containing the answer to compute the respective degree of correlation to reweight sentences and then produce questions by question generation model. The main purpose of sentence pair model is to automatically find the content related to the answer from the article.

    Experiment results show that our system can handle article structure. In contrast to a system with only question generation model, our system has better performance in Chinese and English dataset.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML167檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明