中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81160
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41647080      在线人数 : 2324
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/81160


    题名: Sun Yat-sen Freeway Travel Time Prediction using Deep Hybrid Model
    作者: 丁珮雅;Ting, Pei-Ya
    贡献者: 資訊工程學系
    关键词: 旅行時間;門控循環單元;極限梯度提升;混合模型
    日期: 2019-07-25
    上传时间: 2019-09-03 15:37:30 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著人口不斷增長,交通壅塞的情況變得越來越頻繁。因此,旅行時間已成為交通狀況的重要指標。準確的旅行時間訊息可幫助駕駛人更明智地規劃路線,從而有效緩解交通壅塞的情形。在本研究中,我們提出了一種用於高速公路交通的車輛行駛時間預測模型。本研究使用的數據源自於台灣高速公路局的交通資料庫,並預測了中山高速公路中台北到新竹路段的旅行時間。首先,原始數據的缺失值將由Autoencoder進行插補。然後根據時間序列對數據進行分段,並用於預測模型的構建。為了有效捕捉預測高速公路行駛車輛行駛時間所需的隱藏特徵,我們的系統採用深度學習架構,包括GRU神經網絡模型,XGBoost模型和透過線性迴歸將GRU和XGBoost結合為一個新的混合模型。基於實際交通數據的實驗結果表明,我們所提出的系統在預測精確度和執行時間方面都可以取得良好的性能。;As the population keeps growing, traffic congestion becomes more and more often. Consequently, travel time has become an important indicator of driving experience. Accurate travel time information helps drivers plan their route more wisely and thus effectively alleviate traffic congestion. In this research, we propose a vehicle travel time prediction model for highway traffic. The data used in this research is derived from the traffic database of the Taiwan Freeway Bureau, and the travel time prediction is made for the Sun Yat-sen Freeway between Taipei and Hsinchu. First, the missing value of the raw data is imputed by Autoencoder. The data are then segmented according to time series and are used to build the prediction model. To effectively capture the hidden features required to predict the travel time for the vehicle traveling on the highway, the deep learning architecture is adopted in our system, which includes the GRU neural network model, the XGBoost model, and the Hybrid model that combines the GRU and XGBoost through linear regression. Experimental results based on actual traffic data show that the proposed system can achieve good performance in terms of prediction accuracy and execution time.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML147检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明