中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81184
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 44282681      在线人数 : 1053
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/81184


    题名: 符合時間與場景描述之自動影像生成模型;Automatic Nature Scene Image Generation with Time and Place Descriptions
    作者: 劉亞昇;Liu, Ya-Sheng
    贡献者: 資訊工程學系
    关键词: 對抗式生成網路;影像生成;注意力機制;想像力機制;GAN;Image Generation;Attention;Imagination
    日期: 2019-07-25
    上传时间: 2019-09-03 15:38:44 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著人工智慧的蓬勃發展,無論在影像辨識、語意辨識,影像生成…等等,機器學習都取得了優異的成果,「人工智慧」四個字顧名思義是要人類所創造出來的智慧,藉由讓電腦學習的方式來讓機器或電腦獲得一定的邏輯判斷能力,是目前我們所達到的,但如果微觀的角度去看人工智慧的發展其實還是未到達真正的智慧。
    本篇論文主要是想模擬人類大腦的想像能力來增加生成模型的多樣性,在text-to-image這方面領域其實已經有一些研究了,像是近年的StackGAN、StackGAN++和AttnGAN,只是他們初始的目標都是針對鳥類(CUB-200)資料集和花朵(102Flowers)資料集去做訓練和優化,通常人類在想像一個事物時,通常會給予該事物一個描述,本篇最終目標是利用這個描述產生一個有故事性的圖片,目前階段以蒐集場景的資料來使神經網路有能力產生一個符合描述的場景圖並加強多樣性。
    為了讓生成的圖片有更多的多樣性而不是特定的單幾種圖片,本篇利用圖片的隱藏層資訊來初始化RNN的Memory Cell來產生更豐富的圖片,從實驗結果中,比起直接套用先前研究的網路架構,加入這個方法確實有助於增加生成圖片的多樣性。
    ;With the rapid development of artificial intelligence, machine learning has achieved excellent results in image recognition, semantic recognition, image generation, etc. The deep meaning of the words “artificial intelligence” are the wisdom of human being. Let the computer to learn the way to get a certain logical judgment ability, which is what we have achieved at present, but if we look at the development of artificial intel-ligence from a microscopic point of view, we still have not reached the true intelligence.
    This paper is mainly to simulate the imagination of human brain. In the field of text-to-image, there have been some researches, such as StackGAN, StackGAN++ and AttnGAN in recent years, but their initial goal is to target bird dataset (CUB-200) and flower (102Flowers) dataset for training and optimization. Usually when people imag-ine a thing, they usually give a description of the thing. The ultimate goal of this paper is to produce a narrative photo with description. In present stage, we make neural-based network an ability of generating scene photos corresponded to the description and en-hance the diversity with our dataset.
    In order to make the generated images more diverse than a specific single image, this paper uses the hidden layer information of the image to initialize the RNN Memory Cell to produce a narrative photo. From the experimental results, it indeed works. Comparing to the original AttnGAN architecture, our proposed method does help to increase the diversity of generated images.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML203检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明