English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 25556110      Online Users : 326
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81199


    Title: 旅館場景影像自動分類系統;Automatic Hotel scene image classification system
    Authors: 林翰廷;Lin, Han-Ting
    Contributors: 資訊工程學系
    Keywords: 室內場景;VGG16;Mask R-CNN;特徵融合
    Date: 2019-07-26
    Issue Date: 2019-09-03 15:39:10 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 場景識別是圖像語義分割中相當重要的一個環節,而如何正確且有效率地在場景中找到有效資訊的位置,是場景識別領域中十分困難的問題。在場景識別的任務上,場景是由物體、空間布局和背景之間的關聯關係等因素綜合而成的,而場景中的物體種類對分類結果影響甚深,透過辨識的場景物體分類出場景,例如浴室中的浴缸或馬桶、臥室中的床或書桌等。

    本論文提出的方法是以辨識物體的特徵作為前處理的步驟,再根據結果分類出特定場景,透過Mask R-CNN算法針對輸入的圖片進行特定室內物件分割的處理,接著以分割完的物件作為場景的特徵,再與場景結合並進行分類。實驗結果證明,透過獲取場景中物件特徵的方法的前處理,能在場景識別中取得更好的場景分類準確度。
    ;Scene Recognition is an important operation of Image Semantic Segmentation, in the wide range of scene recognition, it is a thorny issue to correctly and efficient find effective location information in specific scene. In the mission of scene recognition, a scene is mainly comprised of three elements, including object, spatial layout and the relationship between backgrounds, these object types in scene have huge impact on results of classification. Through this matter, scene could be recognized based on those identified objects of scene, for example, bathtub or toilet in the bathroom, bed or writing desk in the bedroom.
    In this thesis, an effective architecture for scene recognition is proposed. The architecture includes a pre-process step to identify feature of each object, then classify specified scene based on the results of object feature. Moreover, those input pictures will be pre-processed through Mask R-CNN algorithm to identify specific indoor objects by results of segmentation, and those specified indoor objects become elements for scene recognition classification. The experimental results show that through pre-process of object identification, the proposed method has the advantages of accuracy in scene recognition.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML110View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明