中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81246
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41647336      Online Users : 2238
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81246


    Title: 基於深度學習之工業用智慧型機器視覺系統:以焊點品質檢測為例;An Industrial AI Vision System based on Deep Learning: an example of solder joint quality inspection
    Authors: 佟紹鵬;Shao-Peng, Tung
    Contributors: 資訊工程學系
    Keywords: 深度學習;工業檢測;焊點;焊接;deep learning;industrial inspection;solder joint;soldering
    Date: 2019-08-06
    Issue Date: 2019-09-03 15:40:25 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 焊點是電子元件和電路板的相會之處,良好的焊接可以讓電路正常運作,然而有瑕疵的焊接會讓整個電路產生不可預期的錯誤,因此焊點的品質對產品的成敗有直接的關係。
    過去的自動化視覺檢測系統仰賴人所制定的規則(rule-based),其修正過程充滿不確定性,本研究通過深度學習以訓練智慧型機器視覺系統,使其能夠辨識焊點的好壞。
    Xception是google繼Inception架構而生的神經網路架構,本論文使用Xception對焊點進行訓練。利用合格與品質不良的焊點樣本經過卷積之後所產生的特徵圖之差異訓練智慧型機器視覺系統,使該系統能夠分辨出焊點之良莠。
    ;Solder joints are the intersection of electronic components and circuit boards. Good soldering allows the circuit to operate normally. However, flawed soldering can cause unpredictable errors in the entire circuit. Therefore, the quality of solder joints has a direct impact on the quality of the electronic product.
    In the past, the automated visual inspection system usually functions in rule-based fashion, and the fine-tuning process was full of uncertainty. In this study we apply deep learning paradigm to train the neural network model to identify the quality of the solder joints.
    Xception is a neural network architecture which inherits the concept of Inception created by Google. This paper uses solder joints to train Xception. A neural network model trained with the difference between the feature maps produced by the convolution of Pass and Ng solder joint samples can identify the quality of the solder joints.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML143View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明