English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41634967      線上人數 : 2224
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/81303


    題名: 基於深度學習與Hybrid N-grams之英文語法錯誤更正系統;A Grammatical Error Correction System based on the Integration of Deep Learning and Hybrid N-grams
    作者: 陳宜陞;Chen, Yi-Sheng
    貢獻者: 資訊工程學系
    關鍵詞: 英文語法更正;深度學習;混和N元語法;英文語法檢查;grammatical error correction;deep learning;hybrid n-gram;grammatical error detection
    日期: 2019-08-16
    上傳時間: 2019-09-03 15:43:19 (UTC+8)
    出版者: 國立中央大學
    摘要: 在英文使用者當中有過半數的人是非母語的英文使用者,對於這些人來
    說如何快速且有效的檢查自己的文章有沒有語法錯誤是一件相當重要的事
    情。 Natural Language Processing 一直是計算機科學領域中一門相當重要的議題, 文法錯誤更正 Grammatical Error Correction 是其中的一項主要研究議題之一。這幾年來,已有多種文法錯誤更正的解決方案陸續被提出來,各有其優缺點。
    本論文結合深度學習與 混 和 N元語法 Hybrid N-gram 來為文法錯誤
    更正問題提出另一種解決方案。此解決方案由三種類神經網路所組成: 1
    混和 N元語法語意分類器、 2 混合 N元語法轉換器和 3 混和 N元語
    法反轉換器。此系統會先判斷輸入的英文句子是否具有混和 N元語法, 接
    著,再檢查與更正語法錯誤,最後才反轉換混和 N元語法並重組回英文句
    子。藉此三階段的方式,達到利用混和 N元語法檢查英文語法的效果。
    本論文將使用 StringNet及 CoNLL2013兩種資料集,來驗證所題方法之
    有效性。會針對三種類神經網路,分別進行不同網路結構及資料前處理方法
    的效果比較及分析。;More than half of English-speaking users are non-native English speakers. For these people, how to quickly and effectively check whether there are grammatical errors in their articles is quite important. Natural Language Processing has always been a very important topic in the field of computer science. Grammatical Error Correction is one of the main research topics. Over the past few years, different approaches to grammatical error correction have been proposed. Each approach has its own advantages and disadvantages. This thesis tries to combine deep learning with mixed N-grams to propose an alternative solution to the problem of grammatical error correction. This solution consists of three types of neural networks: (1) a hybrid N-gram semantic classifier, (2) a hybrid N-gram grammar converter, and (3) a hybrid N-gram grammar converter. This system will first determine whether an English sentence has a mixed N-gram, then check and correct its grammatical error, and finally transform the corrected N-gram back into its corresponding correct English sentence. In this three-stage way, the effect of using the hybrid N-gram to check the English grammar is achieved. Finally, this thesis will use StringNet and CoNLL2013 data sets to verify the performance of the proposed method. The effects of different network structures and data pre-processing methods will be compared and analyzed for three types of neural networks.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML135檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明