English  |  正體中文  |  简体中文  |  Items with full text/Total items : 68069/68069 (100%)
Visitors : 23221528      Online Users : 158
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81337

    Title: 基於全卷積神經網路之中文字分割機制;Chinese Character Segmentation via Fully Convolutional Neural Network
    Authors: 謝柏維;Hsieh, Po-Wei
    Contributors: 資訊工程學系
    Keywords: 文字偵測;自然場景;全卷積神經網路;text detection;natural scenes;full convolutional neural networks
    Date: 2019-08-21
    Issue Date: 2019-09-03 15:45:20 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 自然場景中的文字與人工符號傳達的重要訊息,因此從影像中擷取文字具有許多潛在的用途,然而目前的方法多根基於對拼音文字文本處理,對於中文這類語素文字文本仍有改進的空間。本研究嘗試以單一中文字作為標記重點,提出結合語意分割 (semantic segmentation) 的自然場景中文字偵測機制。我們所提出的方法分成兩階段:第一階段採用全卷積網路 (Fully Convolutional Network, FCN) 訓練對自然場景的中文文本偵測模型,在訓練時除了真實場景訓練集資料外,也加入模擬資料彌補資料集的缺失,強化模型的偵測能力。第二階段則協助分離文字區域,並以區域分布關係對文字框分組,使節和的文字串在不同文字書寫方向和排版中仍然有效,提升應用價值。實驗結果顯示所提出的方法能有效偵測中文文本,並探討各步驟對偵測結果的影響。;The important information conveyed by texts and artificial symbols in natural scenes, so capturing text context from images has many potential applications. However, the current methods are almost based on the processing of phonetic text, and the methods for morpheme text such as Chinese are still improved. This study attempts to propose a Chinese character text detection mechanism of semantic segmentation for natural scene images, with marking the label for each individual Chinese character. The proposed method is divided into two stages: in the first stage, we trained the Fully Convolutional Network (FCN) as the Chinese text detection model for natural scenes. We adopted real natural scene as the training dataset, and added synthetic datasets and to enhance the detection ability of the model. In the second stage, it assisted in separating the text areas and grouping the text boxes by the regional distribution relationship, and combined the character information in different writing directions and layouts to improve the worth of application. The experimental results show that the proposed method can effectively detect Chinese text in natural scenes, and explore the impact of each step on the detection results.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明