English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 36213292      Online Users : 3075
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81482

    Title: Equality of Numerical Ranges of 4�4 Matrix Powers
    Authors: 李佳穎;Ying, Lee Chia
    Contributors: 數學系
    Keywords: 矩陣;數值域;Matrix;Numerical Ranges
    Date: 2019-06-12
    Issue Date: 2019-09-03 15:56:49 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 探討當W(A) 與 W(A^k) 相等,對於所有 1 ≤ k ≤ n + 1。我們根據方陣A的unitary-similarity-invariant結構來尋找A的條件。
    我們首先呈現當2×2矩陣A再一次到三次時W(A)皆相等,若且唯若A為冪等(idempotent)。則當3×3矩陣A在一次到四次時W(A)皆相等,若且唯若A么正相似(unitarily similar)於2×2冪等方正B與矩陣C的直和,且矩陣C滿足W(C^k) ⊆ W(B) 對於所有 1 ≤ k ≤ 4。我們的對於4×4矩陣的主結果將延續這個方向進行討論。
    ;In this thesis, we are interested in the question of when $W(A)$ equals $W(A^k)$ for all $1\le k\le n+1$. We look for conditions in terms of the unitary-similarity-invariant structure of $A$. We show that if $A$ is $2\times 2$, then $W(A)=W(A^k)$ for all $1\le k\le 3$ if and only if $A$ is idempotent. We also show that if $A$ is $3\times 3$, then $W(A)=W(A^k)$ for all $1\le k\le 4$ if and only if $A$ is unitarily similar to a direct sum of the form $B\oplus C$, where $B$ is a $2\times 2$ idempotent and $C$ satisfies $W(C^k)\subseteq W(B)$ for all $1\le k\le 4$. Our main results are the analysis of $4 \times 4$ matrices along this line.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明