中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81727
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41648382      Online Users : 1448
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81727


    Title: 以排液容器法量測液態錫的密度、黏度以及表面張力;Measuring the density、 surface tension and viscosity of a Tin fluid by the draining vessel method
    Authors: 江宗軒;CHIANG, TSUNG-HSUAN
    Contributors: 機械工程學系
    Keywords: 排液容器法;密度;黏度;表面張力;物性量測;deaining vessel method;density;viscosity;surface tension;physical property measurement
    Date: 2019-08-22
    Issue Date: 2019-09-03 16:41:30 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在現今科技中,為了金屬噴粉以及計算流體力學發展,得知高溫金屬液之物性變得十分重要,但大多量測高溫金屬液體之設備,除了價格高昂之外,且至多僅能同時量測兩種物性,因此本文使用排液容器法(Draining vessel method)的方法學,其優勢為一次量測三種物性,且裝置較簡易價格較低廉,再配合適當的演算法,同時量測出密度、黏度以及表面張力,此方法不論是冷流場抑或是高溫金屬液都可以進行量測。本實驗以錫液為主,系統設計以傳統高溫爐為雛形,將底部開有小孔之圓柱形不鏽鋼乾鍋放置高溫爐內部進行加溫,並在上方通一塞子孔道,以及在下方通一排液孔道,使預測物性之流體能流出此容器,不同的流體物性會有不同的流動特性,本文使用描述內部流動特性之修正伯努力方程式來收集其液面變化之高度頭與質量通量的數據,並結合數值方法配合敏感度分析使用適當的高度頭範圍,並使理論高度頭與實驗高度頭誤差平方和最小化,以得到最佳物性解。本研究使用此數值方法量測錫液,比較一次迴歸與三階段迴歸之收斂結果,發現密度與黏度的量測能有效提升準確性。;To impure the results of metal injection molding and the accuracy of computational fluid dynamics, it is important to know the physical properties of high-temperature metal liquids. Most of the measuring instruments can only measure one or two physical properties at the same time. Recently a method called Draining Vessel Method has been developed to simultaneously measure density, viscosity and surface tension. This method can be applied to both a cold flow field and a high temperature metal liquid. In this thesis, the physical properties of tin liquid were measured using the draining vessel method. The experimental system was set up with a furnace to build the prototype. A cylindrical stainless steel container with a small hole at the bottom is placed inside the furnace for heating, and a plug hole is opened at the furnace upper side, and a drain hole is opened at the furnace bottom. The fluid can flow from the container to the load cell. Different fluid properties result in different inject. The modified Bernoulli equations describing flow characteristics to collect two data of elevation height head and mass flux. Combined with numerical methods and sensitivity analysis. The fluid’s density, viscosity and surface tension were computed iteratively through minimizing the difference between the theoretical and experimental elevation heads. In this study, this numerical method was used to measure the tin liquid, and the convergence results of the primary regression and the three-stage regression were compared. It was found that the measurement of density and viscosity can effectively improve the accuracy.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML212View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明