English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41631877      線上人數 : 3636
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/8182


    題名: 基於H.264視訊編碼資訊之即時性移動鏡頭前景分割;Foreground segmentation for moving camera based on H.264 video coding information
    作者: 洪偉迪;Wei-Di Hong
    貢獻者: 通訊工程研究所
    關鍵詞: 前景分割;移動鏡頭;視訊;foreground segmentation;video coding;H.264;moving camera
    日期: 2007-07-06
    上傳時間: 2009-09-22 11:20:21 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 對於視訊畫面之前景物體切割在視訊監控、辨識、檢索以及視訊編碼等方面一直是重要的一環。針對移動鏡頭所進行之切割相較於固定鏡頭有更廣泛的應用。由於視訊資料量龐大,在儲存及傳輸前皆需經過壓縮處理。直接利用壓縮資訊對移動鏡頭視訊內容進行移動物體切割便可省去對於原始影像之處理,為一適合即時應用之演算法。 近年視訊壓縮標準不斷演進,可用以進行切割的資訊也隨之改變。H.264標準中除了傳統的移動向量,還多出了七種模式的區塊分割可提供額外資訊。在前人的移動鏡頭前景切割演算法中,首先利用運動向量以最小平方法求得背景相對於鏡頭之移動,再將與背景移動差異較大之區塊標記為前景區塊。在上述過程中我們利用區塊模式的不同,可以在逼近背景相對運動時取得較具參考價值之運動向量,並且在決定前景區塊時提升判斷之精確度。再加以我們設計之低通濾波器進行空間域與時間域之雜訊消除,最後以可調適性的門檻值來決定切割出的前景區塊。 利用移動向量能即時處理移動鏡頭之視訊內容,較許多空間域前景切割方法有更高之實用性。實驗結果顯示利用區塊模式資訊幫助前景分割,相較於只用移動向量可獲得較準確之結果,並且運算量低,可應用於即時系統中。 Foreground segmentation for video frames has been an important role in video surveillance, pattern recognition, video indexing, and video coding. Due to the large amount of video data, videos have to be compressed before storage and transmission. Foreground segmentation based on compression information saves the processing to the original frame, therefore, is an algorithm suitable for real-time applications. In recent years, video compression standards had been promoted rapidly. In the H.264/AVC video coding standard, in addition to motion vectors, there are also seven-mode block partitions which can provide extra information for segmentation. In former algorithms for moving object segmentation for video acquired by moving cameras, they first approximated the relative global motion model using all motion vectors, than marked the blocks with motion vectors differed from the global motion by an amount as foreground blocks. During the procedure described above, according to the different block partition modes, we can choose the preferable MVs for estimating the global motion, moreover, improve the accuracy of the judgments on blocks as being foreground or background. Finally, we refine the results with spatial and temporal filters of our design and segment foreground with proposed adaptive threshold. With the use of motion vectors, we can process the video data from moving cameras. It makes this algorithm more practical than many object segmentation methods using spatial domain information. It also reduces the computational costs and can be used for real-time systems.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明