English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23103166      Online Users : 311
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81878

    Title: 使用RGB-D掃描點雲進行室內3D幾何重建之自動模型之研究;Study of Automatic Model Generation for Indoor Geometric Reconstruction Using RGB-D Scanning
    Authors: 呂修鋒;Lu, Hsiu-Fung
    Contributors: 光電科學與工程學系
    Keywords: 深度感測;空間點雲;點雲重建;物件分類;語義分割;自動化建模;Depth sensing;Spatial point cloud;Point cloud reconstruction;Object classification;Semantic segmentation;Automated modeling
    Date: 2019-10-04
    Issue Date: 2020-01-07 14:27:38 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文中,探討如何透過彩色相機拍攝的彩色影像,配合深度感測技術拍攝的深度影像生成點雲(Point Cloud),藉此還原室內三維場景分布,並建立自動化室內模型重建流程。在深度感測技術方面,使用飛時測距(Time of Flight , ToF)進行距離資料的獲取,藉此計算空間中點雲座標,來表示室內各物件之位置,並透過點雲密度分布關係,濾除飛時測距誤差所產生的點雲雜訊點。接著透過判別彩色影像當中的特徵點,在一系列的掃描圖像當中,計算前後兩個畫面的相機運動關係,藉此重建出室內全場域點雲分布圖。
    ;In this thesis, we study to build up an auto-modeling calculation model for a precise3D indoor map based on point cloud generated by color cameras incorporated with depth sensor. In depth sensing, we adopt time of flight technology to catch depth information so that the 3D coordinates of the sensing points can be used to build up the 3D object. The point cloud density is applied to filter out the noise of the point cloud by the error of the time of flight measurement. Then through feature capturing between adjacent pictures, we can calculate the movement of the image capture so that we can build up the point cloud for the whole field. In auto-modeling, we adopt boundary selection, region growing, and density classification of the normal vector to extract the indoor point cloud information. Then we apply the least square method to generate plane equations, and the model of the surrounding walls can be generated. Finally, through the semantic segmentation of deep learning, the indoor point cloud is marked with the object name and is classified according to its name to form a graphic file format for auto-modeling.
    Keywords: Depth sensing, Spatial point cloud, Point cloud reconstruction, Object classification, Semantic segmentation, Automated modeling
    Appears in Collections:[光電科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明