English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70548/70548 (100%)
Visitors : 23120866      Online Users : 195
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81886

    Title: 一種仿真LED平行曝光的調控演算法之研究
    Authors: 陳品硯;Chen, Ping-Yen
    Contributors: 光機電工程研究所
    Keywords: 光分佈函數;平行曝光技術;多光源照度分佈演算法;light spread function;parallel exposure technique;multiple irradiance distribution algorithm
    Date: 2019-11-27
    Issue Date: 2020-01-07 14:28:26 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文主要在研究一種仿真LED平行曝光的調控演算技術,可用來模擬LED在平行曝光機中,因UV-LED的光衰變或搭配的準直二次光學元件偏移造成曝光成效不佳的結果。將單一LED與其相配合之二次光學元件組成光源組的照度分佈模型化,藉由建立各個距離目標平面D和光源直徑S的比率(距離直徑比,DSR)的光照度分佈函數,接著依據光照度疊加理論、二次微分法對多光源間距進行最佳化的演算,再將實際掃描式平行曝光機可能的光源組偏移誤差帶入演算法中計算最佳間距,建立配合反射元件的虛擬光源,增加可用的工作面積,最終完成仿真LED平行曝光的調控演算法的撰寫。
    由於以UV-LED為光源所配合的準直二次光學元件製造不易,些微誤差即可造成光分佈不均的情況,因此考量未來模擬與實作驗證的可能性,本研究以白光LED仿真實際UV-LED作為模擬光源來代替。將照度模擬結果以最小平方法模型化,考慮實際的光源偏差,建立包含直線偏移和角度偏移的光分佈函數,再藉由數學函數的疊加原理建立陣列光分佈函數,光源偏移的參數參考履帶帶動光源進行週期性掃描曝光的方式,以常態分佈的概念在± 0.005mm作直線偏移、±0.5度作角度偏移。
    最終本研究在理想不偏移的情況下演算所得的最佳間距,DSR=8、10、12、14、16、20之照度均勻度皆大於94%,在偏移極值的情況下,每個DSR的照度均勻度皆大於93%,而在亂數偏移的情況下,DSR越大,角度偏移對光源偏移的特徵越明顯,照度均勻度降低,因此DSR為8、10、12會有較好的照度均勻度結果,最後建立反射元件的演算法,藉由增加虛擬光源的方式,使的各DSR的可用工作面積增加,而其中DSR為12時從140×140〖mm〗^2增加為150×150〖mm〗^2,可用工作面積增加約14.7%。;In this thesis, we provide an regulation and calculation technique for simulating LED parallel exposure. It can be used to simulate the result of poor exposure which comes from the light decay of the UV-LED or the deviation of secondary optics in parallel exposure machine. The illuminance distribution of the light source group including a single LED and secondary optics is modeled by establishing an illuminance distribution function of a ratio of each distance from the target plane D to the source diameter S (D/S Ratio, DSR). Then optimize the source-to-source spacing by illumination superposition theory and secondary derivative method. After that, add the source group deviation parameters of the scanning parallel exposure machine to calculate the optimal spacing. Next, establish a virtual light source for the reflective element to increase the available working area. Finally, the regulation algorithm for simulating LED parallel exposure is completed.
    Since the fabrication of secondary optics components with UV-LED is not easy, some slight errors can cause uneven light distribution. Due to the possibility of simulation and implementation verification in future, this study replaced the actual UV-LED with white light LED as an analog light source. We model the illuminance simulation by using the nonlinear least squares method. Then, we consider the actual source deviation and establish a light distribution function that includes linear and angular offsets. The light distribution function of the light source array is established by the superposition principle of the mathematical function. The parameter of the light source offset refers to the way continuous tracks drive the light source to perform periodic scanning exposure. Straight offset at ± 0.005mm as normal distribution, and angle offset at ±0.5 degrees for normal distribution. In the case of no deviation,
    According to the design results, in the case of no offset, the illuminance uniformity of DSR=8, 10, 12, 14, 16, 20 is greater than 94%. In the case of offset extremes, the illumination uniformity of each DSR is greater than 93%. In the case of random number offset, the larger the DSR, the more obvious feature of the angular offset to the light source offset. Illumination uniformity is reduced. Therefore, the DSR of 8, 10, 12 will have better illuminance uniformity results. The last, establish the algorithm of the reflective element by creating a virtual light source. The available working area of each DSR is increased. When DSR is 12, the available working area is increased from 140×140〖mm〗^2 to 150×150〖mm〗^2. The available working area is increased by about 14.7%.
    Appears in Collections:[光機電工程研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明