English  |  正體中文  |  简体中文  |  Items with full text/Total items : 68069/68069 (100%)
Visitors : 23154159      Online Users : 208
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/82032


    Title: 合成及研發新穎的電洞傳輸材料和光敏染料;Synthesis and Development of Novel Hole Transporting Materials and Sensitizers
    Authors: 李文仁
    Contributors: 國立中央大學化學學系
    Keywords: 敏化劑;電洞傳輸層;材料開發;太陽能電池;光電轉換;sensitizers;hole transport layer;materials discovery;solar cells;photoelectric conversion
    Date: 2020-01-13
    Issue Date: 2020-01-13 14:04:15 (UTC+8)
    Publisher: 科技部
    Abstract: 自動化生產與技術革命增加我們對電力的需求,且其中大多需依靠石化燃料的供給。如此大量地使用能源迅速消耗天然燃料之存量,同時帶來相當嚴重的環境問題。除此之外,隨著交通鐵路等電氣化的快速發展趨勢也讓未來的能源總需求增加更加不明朗。因此,乾淨的再生能源是必然的研發目標。藉光伏技術將太陽能轉換為電能為解決能源需求的有效策略之一。目前市面上的矽基光伏(photovoltaic,PV)技術可視多一種獲得乾淨電力的有利方式,但其面臨便宜生產製造及如何大量生產的挑戰。在這解決這方面問題,再生能源元件如複合有機無機鈣鈦礦太陽能電池和染料敏化太陽能電池成為另一可選擇替代的新興光伏技術。這些第三代太陽能元件的低成本、可調性和的光轉換效率吸引了研究學者及業界特別的關注。目前,光伏電池的廣泛研發主要針對以下特定目標:(一)開發新興材料以使光伏電池具高穩定性及效率(二)光伏電池元件各類材料及吸光晶體組成優化的廣泛研究(三)微調元件架構以最佳化電池的整體表現。  本研究計劃以綠色能源為主軸,發展具化學穩定的光電材料並應用於太陽能電池之研發。計劃的具體目標為:壹、開發可應用於鈣鈦礦及染敏太陽能電池的新光電材料一、合成組態為予體-予體、予體-受體或予體-受體-予體的新化合物及含鹽類的電洞傳輸材料並應用於鈣鈦礦太陽能電池。二、針對不同結構的電洞傳輸層材料研究其元件效率並鑑別出能改善鈣鈦礦太陽能電池效率及穩定度的最佳組合及要素。三、設計並合成具親水性質的電洞傳輸材料以配合並協助形成鈣鈦礦太陽能電池中較佳的鈣鈦礦層。四、製備幾類無釕的有機/無機混成型染料,並探討這些結構中適當用的金屬以提升染敏太陽能電池的表現。 貳、評估元件的能量轉換效率及其光伏性質一、測試結構相異的材料,依據所獲得之結果分析探討分子修飾與元件特性之關連,以其研發高效能太陽能電池。二、調整電池鈣鈦礦之組成和元件模組以提昇元件效能。三、分析相關結果並近一步規劃必要的修改以製作新穎、穩定、高性能的鈣鈦礦和染敏太陽能電池。 ;Automation of production and technological revolution have increased the need for electrical energy. Current energy supplies depend largely on the fossil fuels which are rapidly depleting and also their extensive burning is causing serious environmental issues. Additionally, with current trend of electrification of transportation, the future total energy demand is unclear. Therefore, pursuing clean and renewable energy sources are still inevitable. Photovoltaic (PV) technologies, which help to convert solar-to-electric energy, promise a reliable strategy to meet the rising energy request. Silicon based PV technology, currently on the market, represent a beneficial tool for clean electricity production. But the main challenge is to obtain economically liable PV power grids and enable large scale production. In this aspect, the renewable energy devices such as hybrid organic-inorganic perovskite solar cells (PSCs) and dye sensitized solar cells (DSSCs) have paved to be new alternative PV technologies. These devices have attracted special attention for their low cost, tunable properties, and respectful photo-conversion efficiencies. Presently, wide studies performed to these PV devices were carried out based on the followings: 1) Novel materials discovery to achieve high stability and efficiency for the PV cells; 2) Broad studies of material configuration and compositions for PV device advancement; 3) Fine tuning of the devices’ architecture to optimize overall cell performance.The current research proposal involves the development of efficient materials with chemical stability while focusing on green chemistry of solar cells. Specific aims of the proposal are: A. Discovery of new photovoltaic materials for PSCs and DSSCs applications:1. To synthesize the photoactive materials with donor-donor, donor-acceptor, donor-acceptor-donor configurations and salt type of materials for PSC applications.2. To analyze the efficiency performance of these configurationally altered hole transport materials (HTMs) and identify the best match for improving the performance of PSCs.3. To design and synthesize HTMs with hydrophilic nature to assist the formation of excellent perovskite layers in PSCs.4. To prepare various ruthenium free organic metal-hybrid sensitizers and investigate the appropriate metals for hybrid construction that can afford efficient performance for DSSCs. B. Evaluation of power conversion efficiencies (PCEs) and other photovoltaic properties:1. To screen the synthesized configurationally and structurally different materials and correlate the obtained results to understand the further requirements in molecular modifications in order to gain efficient devices.2. To adjust the cell fabrication compositions and architect the devices to achieve the desired PCE.3. To analyze the results and plan necessary modifications to generate novel, stable, and high performing PSCs and DSSCs.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[化學學系] 研究計畫

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML51View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明