English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70548/70548 (100%)
Visitors : 23207508      Online Users : 547
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/82034

    Title: 有機光電材料之開發;Organic Materials Development for Organic Electronics
    Authors: 陳銘洲
    Contributors: 國立中央大學化學學系
    Keywords: 多併環噻吩;有機光電材料;p-型與n-型有機薄膜電晶體材料;溶液製程;載子移動率;有機染敏;光伏電池;雙光子吸收;電洞傳輸層材料;鈣鈦礦;光電轉換效能;Organic thin film transistors (OTFTs);[X+1+Y] one-pot;fused-thiophene;DTT (dithienothiophene);BTDT (benzothienodithiophene);TTA (tetrathienoacene);organic dye;DSSC;OPV;2PA;hole transporting layer (HTL);PSC (perovskite solar cell)
    Date: 2020-01-13
    Issue Date: 2020-01-13 14:04:28 (UTC+8)
    Publisher: 科技部
    Abstract: 本實驗室開發One-pot [X+1+Y]多併環噻吩製備方法,並以其為核心致力於有機光電材料之開發。P-型材料中,苯三併環噻吩之蒸鍍電性高達0.7 cm2V-1s-1,可溶性苯三併環噻吩材料利用溶液製程具0.65 cm2V-1s-1之高電性,於台灣本土開發之可溶性OTFT材料中名列前茅。之後更聚焦於可溶性材料之開發,其中材料具0.8 cm2V-1s-1於Chem.Commun.發表,具1.7 cm2V-1s-1之材料於Adv. Mater.發表。近期所開發之材料具~2.6 cm2V-1s-1之高電性表現,即將臺灣所開發之p-型小分子之溶液製程電性記錄更上推層樓(備稿:JACS)。目前更已開發出另一新材料,其溶液製程之元件效能更高達~ 4.0 cm2V-1s-1。N-型材料之開發中,蒸鍍型材料具0.43 cm2V-1s-1電性,可溶性材料溶液製程之元件效能可達0.45 cm2V-1s-1電性(AFM發表)。近期所開發之新材料具0.77 cm2V-1s-1之電性(備稿AFM)。更好之成果是新開發之新材料已具2.5 cm2V-1s-1之電性(擬投AM),後者即將為全台最高n型小分子之溶液製程電性紀錄。利用所開發之可溶性高電性材料,以溶液製程製備之雙電性元件,p-型與n-型電性分別可達 0.8 與0.37 cm2V-1s-1,為全球目前已知小分子blend之最高雙性電性紀錄(於AFM發表)!新開發之共軛單元,可應用於多個有機光電領域。已有3篇OPV文章發表。也發表三篇高雙光子吸收(2PA)之文章發表。本實驗所開發之有機染敏材料(DSSC)之光電轉換效能達10.1%(JACS發表)-為當時全台最高光電轉換效能記錄。我們已改良此染敏並提升其電性紀錄達11.2%(JMCA發表)。本實驗室所開發之電洞傳輸層材料(HTL)於Sn-based PSC(鈣鈦礦太陽能電池)具7.23%高效能,為全球Sn-PSC最高光電轉換效能記錄之一(JACS發表)。最近新開發之HTL材料於Sn-PSC已展現7.7% PCE之高效能。於此計劃,我們將繼續改良目前這幾個電性最好、效能最高之材料,以完成元件端製程之優化,期將目前已得之好成果更上推層樓,並完成其文章之發表。同時我們亦將繼續開發電性更高、穩定性更好之有機光電材料,期與全球頂尖實驗室一競高下,為台灣發光。 ;Organic thin film transistors (OTFTs) have attracted intensive attention for potential applications in flexible displays, low-cost electronic papers. In recent years, my group has developed facile [X+1+Y] one-pot synthetic routes for fused thiophenes preparation, such as DTT (dithienothiophene), BTDT (benzothienodithiophene), TTA (tetrathienoacene), and PTA (pentathienothiophene). A few new fused-thiophene-based derivatives have been developed for OTFTs. For p-type materials development, we reported stable soluble BTDT-based materials with 0.65 cm2V-1s-1 mobility fabricated via a solution process. Recently, we have published two new soluble small molecules exhibited mobilities of 0.81 and 1.7 cm2V-1s-1, fabricated via a solution process. More recently, our new developed p-type small molecules have achieved high mobilities of 2.6 - 4.0 cm2V-1s-1. The later will be the Taiwan highest mobility small molecule via a solution process. For n-type materials development, we have developed a few new air-stable quinoidal molecules, for example, DTTQ exhibits ~0.45 cm2V-1s-1 mobility in air (AFM). Recently, we have developed two new soluble n-type small molecules exhibited mobilities of 0.77 and ~ 2.5 cm2V-1s-1, which will be the Taiwan highest n-type mobility small molecule via a solution process. Notably, these newly developed thiophene-based units are good building blocks and can be applied in OPV, 2PA, DSSC, and PSC. For example, our TTA-based small molecules and thioalkylated thiophene-based polymers have exhibited 4% and 9.4% PCE in OPV, respectively. Our newly developed TTA-based chromophores exhibited high 2PA properties, up to 3000 GM, which is the highest performance of fused-thiophene-based 2PA chromophores. Our new developed TTA-based organic dyes exhibited PCE up to 11.2%, which also set a new highest record in Taiwan. Lastly, our new developed hole transporting layer (HTL) small molecules in Sn-based PSC (perovskite solar cell) exhibited 7.23%. More recently, we have developed a new HTL small molecule with a 7.7% PCE, which is one of the best HTLs for Sn-based PSC in the world.Here in this project, we will continue preparing our newly-developed high-performance materials for their devices optimization and then published these good results. At the same time, new small molecules will be developed for OTFT, OPV, DSSC, 2PA, and PSC. The optical/electronic performance of these new materials will be evaluated.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[化學學系] 研究計畫

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明