English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625590      線上人數 : 1965
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/82043


    題名: 有機熱電材料與元件開發;Development of Organic Thermoelectric Materials and Devices
    作者: 劉振良
    貢獻者: 國立中央大學化學工程與材料工程學系
    關鍵詞: 有機熱電;有機半導體;有機電子;溶液製程;摻雜;複合材料;有機電晶體;綠色能源;軟性元件;多併噻吩;organic thermoelectrics;organic semiconductors;organic electronics;solution processing;doping;composite materials;organic transistors;green technology;flexible device;fused thiophene
    日期: 2020-01-13
    上傳時間: 2020-01-13 14:04:52 (UTC+8)
    出版者: 科技部
    摘要: 當今傳統石化能源的短缺和環境汙染問題重視,綠色能源和環境友好多元化利用成為有系統解決此問題一個重要技術途徑。熱電材料為一種利用半導體中電荷傳輸來實現熱能和電能直接轉換的功能材料,而無機半導體材料是當前性能最佳的熱電材料,然而由於其原材料資源有限及加工技術複雜且重金屬具毒性等侷限而難以實現大規模工業化應用。然而有機材料製備有機熱電元件對未來發展極為關鍵,由於其具備分子設計調控性能、可溶液低溫製程、印刷性、低成本及大面積製作等優勢,若能有效地開發高熱電特性、可靠性及環境穩定性等有機熱電元件,發展市場潛力將可提昇,相信此舉對人類未來經濟發展與生態環境之維持有極重要貢獻。為了達成高效能有機熱電元件,將以溶液法製備有機摻雜熱電薄膜和有機混成複合熱電薄膜。將設計一系列新型P型和N型有機小分子和高分子半導體與特定摻雜物進行摻雜效應,及此新型高分子半導體與高熱電效能的無機半導體或奈米碳材進行混成製備成膜和元件。三年研究計畫目標如下:(1)有機高分子及小分子半導體開發。(2)溶液製程製備有機及其混摻薄膜並應用於熱電元件。(3)熱電元件最適化技術。(4)建立有機熱電電材料中分子結構、溶液製程參數、混摻薄膜形態、半導體分子排列、元件效能關係。(5)軟性熱電模組整合。 ;Green technology has attracted much attention in recent years due to the fear of exhaustion of traditional fossil sources and the rising awareness of environmental protection. Thermoelectric technology is an auxiliary energy technique that can directly convert waste heat to electricity. This green energy-saving technology is considered to be a promising way to relieve the pressure of energy and environment. However, traditional inorganic thermoelectric materials pose significant challenges due to high cost (highly complex vacuum processing route), toxicity (element such as Pb, Bi and Te), scarcity (relatively low earth abundance), as well as brittleness particularly when it comes to applications requiring flexibility. On the other hand, organic materials possess excellent flexibility in comparison with conventional thermoelectric materials, which constitute their particular advantages in flexible applications Furthermore, benefitting from striking developments in organic electronics, organic materials have been widely considered, with the unique features of fine-tuned electrical properties via molecular design, solution processability and light weight. More importantly, the low thermal conductivity of organic materials offers potential for possessing high thermoelectric performance, especially at low temperatures. The combination of these features makes organic thermoelectrics an emerging interdisciplinary research frontier, which can open up new opportunities for thermoelectrics with their inorganic counterpart.To achieve high performance of organic thermoelectric materials, doping organic semiconductors and polymer composite will be prepared. Doping is an effective approach to improve the power factor by raising the electrical conductivity and is one of the most widely used strategies to improve the thermoelectrics performance of organic-based materials. In addition to optimizing the carrier concentration and increasing the carrier mobility to improve the thermoelectric performance, the structure-property relationship in organic thermoelectric materials for molecular structures such as backbones and side substitutes will be studied based on newly developed organic semiconductors. On the other hand, polymer nanocomposites can possess polymer characteristics such as low thermal conductivity, solution-based processability, and mechanical flexibility. Meanwhile fillers can control carrier transport to provide an alternative way of optimizing the tradeoff between the electrical and thermal properties. The carbon-based nanomaterials and inorganic materials with high thermoelectric performances could be candidates as fillers for synthesizing polymer composites. Low bandgap donor-acceptor conjugated polymers with good semiconducting properties will be used for polymer matrix.In the three-year proposed project, the following issues will be addressed: (1) Development of novel conjugated polymers and small molecules semiconductors. (2) Solution-processing methods to fabricate thin film for organic thermoelectric application. (3) Analysis in device physics and optimization. (4) Establish the relationship between molecular design of organic thermoelectric materials, mixing behavior of hybrid materials, solution-processing parameters, thin film morphologies and molecular packing of semiconducting domains and device performance. (5) Integration for flexible thermoelectric module.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[化學工程與材料工程學系 ] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML224檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明