English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23209355      Online Users : 596
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/82129

    Title: 以S-O-R框架設計跨領域業配文偵測方法之研究;Devising a Cross Domain Algorithm to Detect Deceptive Review Comments with S-O-R Framework
    Authors: 許秉瑜
    Contributors: 國立中央大學企業管理學系
    Keywords: 刺激 - 生物 - 反应(S-O-R)框架;業配文偵測;Deceptive reviews detection;Stimuli-Organism-Response (S-O-R) framework
    Date: 2020-01-13
    Issue Date: 2020-01-13 14:16:47 (UTC+8)
    Publisher: 科技部
    Abstract: 隨著電子商務的興起,網路上的產品評論也隨之成長。但是為了獲取經濟利益,廠商提供的虛假消費者評論也隨之起。為了能解決這個重要問題,有幾個研究已經嘗試設計分類器將評論分為真實與虛假。這些研究大部分使用傳統的文字挖礦甚或深度學習方法。這些方法的共同特點就是建立模型使用的字詞與訓練集的文本高度相關。但在實務上,不同領域的評論會使用差異很大的字詞來評論產品,直接導這些分類器跨領域應用時accuracy 可以低到只有55%. 就算是深度學習的方法也沒改善多少。本研究將以Stimulus-Organism-Response (S-O-R) framework 為基礎。由這理論的觀念推導出相關的字詞品類。並經由LIWC, Wordnet 以及網站取的相關字詞。根據這些字詞,一個跨領域分類器將會被設計出來。這個分類器將會被應用在三個常用領域的評論來檢驗其精準度以及跨領域的應用性。 ;E-commerce has been developed at the high pace in recent years. Accordingly, the rise of potential spamming reviews from the online services is growing quickly and attract significant concern from many organizations. Therefore, deceptive detection is one of critical issues in online businesses. Existing studies investigated deceptive detection mainly base on the technology of traditional text mining. As a result, the detection is closely related to the training corpus collected. However, reviews for different application domains utilize very different words. As the result, the precision and accuracy of these approaches were less than ideal when being applying to different domains. In this study, a cross domain detector is designed by utilizing the Stimulus–Organism–Response (S-O-R) framework to infer word categories. The proposed approach will be intensively evaluated with the three benchmark datasets comprised by previous research to compare the performance with the state of the art approaches.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[企業管理學系] 研究計畫

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明