中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/82130
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42142879      Online Users : 1344
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/82130


    Title: 精準矽烷化: 新穎功能性氮矽三環自組裝分子之材料合成、表面接枝機制與生物感測應用;Controlled Silanization: Novel Functional Silatrane Assemblies from Material Synthesis、Surface Grafting Mechanism and Implementation for Molecular Diagnosis
    Authors: 黃俊仁
    Contributors: 國立中央大學生醫科學與工程學系
    Keywords: 精準矽烷化;表面化學;生物感測器;氮矽三環化學;抗汙材料;生物界面;雙離子材料;Controlled silanization;surface chemistry;biosensors;silatrane chemistry;antifouling materials;biointerfaces;zwitterionic materials
    Date: 2020-01-13
    Issue Date: 2020-01-13 14:16:48 (UTC+8)
    Publisher: 科技部
    Abstract: “精準矽烷化”為控制矽烷分子在表面上的接枝密度、厚度、粗糙度、分子位向性與重製性,這是目前矽烷材料的應用上最大的難題。由於矽烷官能基易受濕度與溫度影響而進行水解與縮和反應,讓分子在溶液中或表面上聚集,形成聚矽氧烷(polysiloxane)顆粒,導致極厚、不均勻且化學穩定性差的塗層,難以控制其在表面上的修飾品質,而近年奈米材料與檢測元件快速發展,以矽為基材的表面處理技術以矽烷為主,卻缺乏”精準矽烷化”技術,導致表面功能不佳及製程不穩定,限制其發展與商業應用。以場效電晶體生醫感測器(field-effect transistor-based biosensor, Bio-FET)生物感測器為例,檢測範圍約1~10 nm,檢測靈敏度隨著與表面的距離以指數方式衰減,也就是說,表面塗層如果太厚或是厚度不均勻,甚至塗層厚度超過檢測範圍,將嚴重降低Bio-FET的靈敏度與檢測可靠度。本研究將開發嶄新抗汙且可功能化氮矽三環自組裝分子(antifouling and functionalizable silatrane assemblies),氮矽三環以氮矽鍵軸組成的三環籠狀對稱結構,可在水溶液中穩定存在,易於後段合成加工,本研究將開發一系列功能性氮矽三環自組裝分子,包括帶有胺基、硫醇、親水抗汙的磺甜菜鹼兩性雙離子和可功能化羧基的氮矽三環分子。我們將研究表面自組裝機制與功能,驗證“精準矽烷化”的可行性,分析表面性質,並且用於建構生物感測器的生物界面,表現氮矽三環塗層具有高度平整性、接枝密度、化學穩定、位向性和重製性,提高感測器在複雜溶液中的靈敏度與特異性,完整建構“氮矽三環表面化學”之樣貌,以啟發未來更多的應用與發展。 表面自組裝材料一直對界面科學有重要影響,本研究將著力于開發新型功能性氮矽三環,朝向“精準矽烷化”,多面向的研究將提升界面化學、生醫材料與奈米科學的進步與發展。最後,本計畫將廣泛地影響特用化學產業核心技術的建立與高階人才的培養。 ;“Controlled silanization” is an approach to harness the grafting density, thickness, roughness, molecular orientation and reproducibility of organosilicons on surfaces. However, the considerable susceptibility of organosilicons to moisture and temperatures, leading to fast hydrolysis and condensation of silane groups, remains problematic for a wide range of applications. The formation of polysiloxane aggregates in solutions and surfaces contributes to thick, inhomogeneous and chemically unstable organosilicon coatings on surfaces, deteriorating the modification quality. As advance in nanomaterials and nanodevices, lack of “controlled silanization” hampers the commercialization of silicon-based devices due to compensated surface functions and un-reliable manufacturing process. Field-effect transistor-based biosensor (Bio-FET), for example, exhibits a narrow probing distance of 1~10 nm and the sensitivity decays exponentially with the distance from the surface. Therefore, a thick and inhomogeneous coating on the sensor surface can compromise the detection performance. Accordingly, in this proposal, we will develop a set of novel antifouling and functionalizable silatrane assemblies that contain tricyclic caged silatranyl ring and transannular N → Si dative bond. The unique structure of organosilatranes gives rise to excellent chemical stability in presence of water and facilitates post-synthesis. In this work, a set of functional organosilatranes, carrying amine, mercapto, zwitterionic antifouling sulfobetaine and functionalizable carboxylate groups, will be developed. We attempt to investigate molecular assembling process of silatranes on surfaces and to verify surface characteristics and to establish highly flat, compact, chemically stable, good orientated and reproducible biointerfaces for molecular detection in complex medium. The efforts will further enhance the specificity and sensitivity of a biosensor. The intact contour of “silatrane surface chemistry” will be developed for their great scientific potentials and a wide spectrum of applications. Self-assembling materials have been greatly influential to surface science. The proposal will be devoted to “controlled silanization”. Studies from different angles will boost the advances in surface chemistry, biomaterials and nano-sciences. Last but not least, the outputs of the research will generally affect the establishment of special chemistry industries and development of high-level talents.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Biomedical Sciences and Engineering ] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML267View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明