English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119724      線上人數 : 1497
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/82149


    題名: 高效能高自由度串疊鈣鈦礦太陽能電池封裝技術;High Efficiency and High Freedom Packaging Technique of Tandem Perovskite Solar Cell
    作者: 劉正毓;賴昆佑
    貢獻者: 國立中央大學光電科學研究中心
    關鍵詞: 電子封裝;晶片鍵結;Sn-In金屬鍵結;覆晶封裝;固態交互擴散;Electronic packaging;chip bonding;Sn-In metal bonding;flip chip packaging;solid state inter-diffusion
    日期: 2020-01-13
    上傳時間: 2020-01-13 14:17:50 (UTC+8)
    出版者: 科技部
    摘要: 由於優異的光電轉換效率與廉價且快速的製程,近年鈣鈦礦電池快速崛起,成為具學術及太陽能產業重要發展的太陽能電池材料。然而鈣鈦礦電池的致命傷為低熱穩定性與低耐水氣,因此在商業應用上相對困難。為了能實際應用鈣鈦礦電池開發太陽能,就必須發展完整阻隔環境的封裝技術,與高效能串疊組合。此計畫先針對鈣鈦礦電池元件電極的穩定度發展:(1) 金屬電極擴散阻障層,與(2) 開發新式「分離製程-後轉移組合」之電極製程,利用以上二個技術概念提高Perovskite(鈣鈦礦)電池電極的穩定性。再完成製作Perovskite太陽能電池元件的電極高穩定度後,再進行高抗水氣及低熱累積製程封裝技術的開發:(1) UV填充封裝膠的表面改質而達成高抗水氣表面,(2) 抗水氣介面的開發。完成以上具高穩定性與可靠度的鈣鈦礦元件及封裝製程後,本計畫進一步將Perovskite太陽能電池和Ⅲ-V/c-Si電池串疊,首先必須開發高相容性固態金屬鍵合技術,提供高自由度無機電池間串疊使用,並搭配塗佈溶膠-凝膠SnO2於Perovskite與Ⅲ-Ⅴ電池之間做串疊中間層,最終完成高效能Perovskite/III-V/c-Si (triple-junctions)串疊。此多電池串疊技術的開發成功可以建立實際「串疊電池光電轉換效率」與「子電池能隙」關係圖,對於將來在提高串疊太陽能電池之效能有重要參考依據。 本計畫的預期效能值指標規劃如下:已知2 T串疊結構有良好光電轉換效率,並且有簡潔封裝線路與較少寄生電阻的產生。因此,在Si電池的效能(20 %~27 %)基礎上,本計畫將以2 T串疊的方式,以簡單且低成本的製程,在Si電池元件塗佈製作Perovskit層,達成2 T(Perovskite/c-Si)串疊增加光電轉換效率,目前初步規劃Perovskite/c-Si光電轉換效率達到30 %。此外,由於製備III-V電池的技術成熟,InGaP/Si的串疊系統之光電轉換效率達30 %左右。本計畫也將藉由高穿透率金屬鍵合技術,完成III-V/c-Si串疊,將串疊電池效率進一步推進到35 %。本計畫最終預期完成Perovskite/III-V/c-Si (triple-junctions)串疊結構,預期的光電轉換效率為40 %,並且期望朝向世界紀錄46 %邁進。 ;Perovskite solar cell (PSCs) becomes a super star in the photovoltaic field in recent years. Due to their high power conversion efficiency and low-cost fabricating process, it become a popular topic for solar cell. However, the low thermal stability and low water resistance of Perovskite result in poor reliability further limits their commercial possibility. To implement it in industrial application, The improvement of the intrinsic properties of PSCs、encapsulation issues and the high efficiency tandem solar cell must be developed simultaneously. This project aims on the electrode stability of PSCs modules: metal electrode diffusion barrier and developing new technology called “separated electrode fabrication-recombination process”. Using the concept of this technique to fabricate Perovskite module with high stability electrodes. After accomplishing the electrode stability of the component, we will develop high moisture resistance and low heat accumulation process packaging technique (1) the surface modification of filled colloidal. (2) development of waterproof interface. After completing the Perovskite module and the packaging process with high stability and reliability, and further stacking Perovskite solar cells and inorganic/inorganic solar cells, this project develops high-compatibility solid-state metal bonding technology to provide high-freedom selection of inorganic solar cell to complete high-efficiency tandem solar cell. Using this tandem cell technology, we establish a graph of the power conversion efficiency versus energy gap for the actual tandem cell, which is an important reference for future high-efficiency solar cells. The target of high efficiency plan in this project: according to the widely used single junction C-Si solar cells and commercial large area silicon solar cells have power conversion efficiency about 26 %~27 % and 22%~23%. Some of tandem silicon solar cell system has been proposed already. The power conversion efficiency of these tandem solar cell: 2T = 23.6 % ; 4T = 26.4 %, which approaches the recorded efficiency of silicon gradually. In addition, because of the mature III-V manufacturing process, III-V material such as GaInP is also common used with silicon in the tandem solar cell system with the power conversion efficiency with 30%. According to above, the 2T tandem solar cell have better performance in efficiency, and with concise package wire and less parasitic resistance effect. So, we decide to use 2T tandem method to complete the Perovskite/III-V tandem solar cell with an efficiency surpass 30% from reference. Finishing the III-V/c-Si tandem solar cell with efficiency about 35% by using high transparency metal bonding technique. Ultimately finish the Perovskite/III-V/c-Si tandem solar cell with efficiency about 40 %. This project bases on developing a Perovskite solar cell with a stable electrode, high transparency metal bonding technique and high water resistance efficiency technique, and complete the high efficiency tandem solar cell in final.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[光電科學研究中心] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML331檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明