English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 37898610      Online Users : 352
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/82266


    Title: 複合新穎觸媒與異質石墨烯於高效能產氫與模組整合之研究;The Investigation of Novel Catalyst Hybridized with Hetero-Atom Doped Graphene for High Efficient Hydrogen Generation and Their Integration
    Authors: 蘇清源;程育人
    Contributors: 國立中央大學能源工程研究所
    Keywords: 光電化學水分解;觸媒;電解;石墨烯觸媒;photoelectrochemical water splitting;electrolysis;catalysis;graphene catalyst.
    Date: 2020-01-13
    Issue Date: 2020-01-13 14:34:43 (UTC+8)
    Publisher: 科技部
    Abstract: 此研究計劃藉由整合矽光伏半導體和新穎電解觸媒電極於單一電解水槽以提高太陽能轉氫能效率。以矽半導體轉換太陽能成為電能在再生能源的應用中佔有重要角色,但是再生電能的儲存技術仍有許多亟待克服的問題,以電能轉換成氫能提供ㄧ具有潛力的方案。太陽能電池串接電解水槽產氫雖然是很直接的裝置,但是電流的傳輸會有能源損耗。藉由整合矽光伏半導體和水電解催化觸媒電極於ㄧ體,以及使用新穎催化觸媒材料,可以避免傳輸損耗,也因為觸媒電極就在矽光伏半導體表面,產生的電荷載子可立即參與電解反應,從而進一步提升太陽能轉換成氫能的整體效率。典型設計是將陽極觸媒材料直接鍍在光伏半導體表面,鍍在光伏半導體表面的觸媒,除了催化水分解反應外,會同時改變半導體表面的能帶彎曲,從而影響產生光伏電壓和電流的產生,這對驅動氧化還原反應非常重要。子計畫ㄧ研究藉由結構化觸媒對能帶的影響,來提升光電壓和電流產生效率。子計畫二研究新穎異質石墨烯觸媒,以取代稀有金屬觸媒,減低材料成本。最後整合兩子計畫在陰極和陽極觸媒的研究,設計並演示目標>15%的太陽能產氫光電水解槽。 ;The research plan aims to improve solar to hydrogen conversion efficiency by integrating Si photovoltaic semiconductors and novel electrolytic catalyst electrodes in a single electrolysis cell. The conversion of solar energy into electricity by solar cell plays an important role in renewable energy development. However, the storage of the generated electricity remains a challenging problem. The conversion of electric energy into hydrogen provides a potential solution. Although a direct connection of solar cell to an electrolysis cell is straightforward. The electric current transmission will cause energy loss. By integrating photovoltaic semiconductor with electrolysis catalyst together, it can avoid the transmission loss. In addition, the generated carriers can be quickly used by catalyst for water splitting, therefore improving overall solar to hydrogen energy conversion efficiency. A typical design is to directly plate the anode catalyst material on the surface of the photovoltaic semiconductor. Catalyst electrodes play an important role here. In addition to catalyze water splitting reaction, it can also change the band bending of semiconductor, thereby affecting the photo voltage and current generation, which is very important for driving water redox reaction. Subproject one will study structured catalyst on semiconductor surface to improve the photo voltage and current generation from photoanode, thereby improving the solar to electricity conversion efficiency. Subproject two will study modified graphene catalyst to replace the precious catalyst metals, thereby reducing the material cost. The research results of two subprojects on anode and cathode will be integrated together. The goal is to demonstrate a >15% solar to hydrogen energy conversion efficiency electrolysis cell.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[能源工程研究所 ] 研究計畫

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML284View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明