English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119910      線上人數 : 1344
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/82291


    題名: 基於深度學習之綠能無線通訊:功率控制及最佳化;Deep Learning for Green Wireless Communications: Power Control and Optimization
    作者: 古孟霖
    貢獻者: 國立中央大學通訊工程學系
    關鍵詞: 綠能無線通訊;功率控制;凸優化;深度學習;多層感知器;長短期記憶神經網路;多用戶干擾;Green wireless communications;power control;convex optimization;deep learning;multilayer perceptron (MLP);long short-term memory network (LSTM);multi-user interference
    日期: 2020-01-13
    上傳時間: 2020-01-13 14:37:19 (UTC+8)
    出版者: 科技部
    摘要: 在物聯網時代,從外在環境獵取能量技術被視為一項維持可充電式低功耗無線裝置運作的重要解決方案。即使可獵取的能量是長久且源源不絕,使用能量獵取技術於無線通訊的主要挑戰在於電池充電中能量獲得的未知性及時間因果性造成時間上的能量使用排程更加不易。現存方法使用凸優化於功率控制設計,但不合理地假設無線裝置能完美地知道未來能量獲取資訊。本研究計畫的目的在於設計基於太陽能獵取之可充電式綠能無線通訊功率控制。吾人將使用過去太陽能大數據資料於凸優化及深度學習,在滿足有限電池容量及能量獲取時間因果性限制下,研究不需知道未來能量獲取資訊的單用戶及多用戶綠能無線通訊系統之功率控制預測以最大化系統容量。具體而言,在單用戶通訊環境下,吾人將研究多層感知器與長短期記憶神經網路,以及搭配不同的損失函數設計來智能地預測及最佳化獵取能量的使用。吾人進一步延伸單用戶設計至功率控制預測更為關鍵的多用戶干擾通訊環境,依據多用戶與共同終端數據交換量的多寡,研究適用於多用戶的集中式與分散式功率控制技術。最後吾人將藉由電腦模擬來評估所提基於深度學習之功率控制方法的系統效能。 ;Energy harvesting from ambient environments has been considered as a potential remedy for providing perpetual energy to low-powered wireless devices, especially in the era of Internet of Things (IoT). While the harvested energy is unlimited for a long time, a major concern for applying energy harvesting in wireless communications lies in that the uncertainty and causality of energy arrivals in battery replenishment make it difficult to schedule energy usage over a finite time horizon. The existing schemes utilize convex optimization for power control but unreasonably assuming that the harvested energy profiles in the future are perfectly known to the wireless devices. The goal of this project is to design the power control of green wireless communications that rely on solar power as an energy source to replenish the battery. By means of historical real solar data in deep learning and convex optimization, we investigate the prediction of power control, which does not require the knowledge of prospective energy arrivals, for maximizing the system capacity, subject to battery storage and energy harvesting constraints, in both single-user and multi-user scenarios. Specifically, we resort to the multilayer perceptron (MLP) and the long short-term memory network (LSTM) with various designed loss functions for intelligently optimizing and predicting energy usage in the single-user scenario. As an extension to the multi-user scenario, in which power control prediction becomes much more critical under multi-user interference, we study centralized and distributed power control schemes for multi-users with different amounts of information exchange between the users and the center. Computer simulations will be conducted to rigorously evaluate the system performance of the proposed deep learning-based power control schemes.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[通訊工程學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML321檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明