English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23179030      Online Users : 276
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/82365

    Title: 應用於人體姿勢辨識與機器人之可重組深度神經網路引擎-總計畫暨子計畫一:應用於監督式學習之可重組深度神經網路技術;Reconfigurable Deep Neural Network Techniques for Supervised Learning
    Authors: 李進福;蔡宗漢;蔡佩芸
    Contributors: 國立中央大學電機工程學系
    Keywords: 人工智慧;深度神經網路;監督式學習;強化式學習;可重組;姿勢辨識;機器人;Artificial Intelligence;Deep Neural Network;Supervised Learning;Reinforcement Learning;Reconfigurable;posture recognition;robotics
    Date: 2020-01-13
    Issue Date: 2020-01-13 14:48:08 (UTC+8)
    Publisher: 科技部
    Abstract: 深度神經網路是一廣泛被使用的人工智慧技術,在人工智慧終端裝置應用上,深度神經網路引擎需要符合低耗能、高彈性、及短的端至端等待時間。因此本總計畫『應用於人體姿勢辨識與機器人之可重組深度神經網路引擎』將開發一應用於人體姿勢辨識與機器人之可重組深度神經網路引擎來符合這些要求。所開發之可重組深度神經網路引擎具有以下創新性:1)可支援監督式及強化式學習之深度神經網路;2)可支援不同深度神經網路模型之推論;3)使用混合數位與類比運算單元來降低耗能;4)利用姿勢與行為辨識系統以驗證此引擎之效能。此子計畫『應用於監督式學習之可重組深度神經網路技術』將開發應用於監督式學習深度神經網路之可重組技術。所開發之可重組技術具有以下創新性:1)固定端至端等待時間之可重組技術;2)可支援不同模型之可重組技術;3)可用於混合數位與類比運算單元之可重組技術。 ;Deep neural network (DNN) is one widely used artificial intelligence (AI) technique. The DNN engine in edge devices for the AI applications should meet the requirements of low energy, high flexibility, and short end-to-end latency. Therefore, we attempt to develop a reconfigurable DNN (RDNN) engine for the applications of human posture recognition and robotics to meet the requirements under the grand project entitled “Reconfigurable Deep Neural Network Engine for human posture recognition and robotics”. The innovations of the developed RDNN include: 1) support the supervised and reinforcement learning algorithms; 2) support various DNN models including compressed models; 3) use hybrid digital and analog computing units to minimize energy consumption; and 4) using posture and behavior recognition system to verify the performance of RDNN engine.This subproject entitled “Reconfigurable Deep Neural Network Techniques for Supervised Learning” attempts to develop reconfigurable design techniques for DNN with supervised learning. The innovations of this subproject include: 1) reconfigurable technique for CNNs under the constraint of end-to-end latency; 2) reconfigurable technique for various CNN models; 3) reconfigurable technique for hybrid digital and analog computing units.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[電機工程學系] 研究計畫

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明